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1. Introduction

The cbjectives of the High Performance Distributed
Systems Architecture (HPDSA) project are 10

«  integrate very high bandwidth networks with

* heterogencous computer architectures (including
parallel and specialized processors) and

« support multiple programming models with this
system.

The driving forces for this project are user demands for
hieh-performance computing coupled with  the
a ability of gigabit and high bandwidth networking.
C..nmand and control applications are increasingly
requiring the capabilities of both specialized processors
and supercomputer-class machines. These resources wre
often concentrated at computer centers while the data
sources and users of these systems are geographically
distributed. By linking users, data sources, and svstems
together with high-speed networks and  distributed
operating systems. we can substantially improve the
quality of command and control information and provide
that information to more people.

A high-performance distributed operating system
must satisty a number of design goals (o accomplish our
architectural objecnives. Foremost. it must be capable of
accommodating a wide varicty of compulers. petworks,
and programming languages. The performance demands
and diversity of missions in C° enviropments require
hcterogeneous  computing  and  communications
environment, This heterogencous environment Consists
not only of gencral-purpose computers. but  abso
supercomputers. parallel processors. graphics renderers.
digial  signal  processors. and - other  speciabized
platforms. Each platform provides specialized resources
to the computing environment. but the applications using
these distributed resources require that they operate as a
unified and consistent whole. A distributed architecture
that provides a uniform programming model over a wide
range of computing plattorms and applications can
achieve this goal.

The object-oriented programming model provides a
framework for such a system. It allows users to have a
consistent view of alt services. while insulating the user
from the implementation details of those services. This
enforcement of modularity and the separation of pohicy
and mechanism make the objes t model a powertul way
to build large-scale. distrsbuted applications. Therefore,
support for the object model is an important goal i the
HPDSA.

Nonethcless, we recognize that there are many
applications that do not naturatly fit into this model.
This class of apphcations includes equation solvers. text
searching  aleortthms.  and  demand-driven  shared-
memory systems. Theretore, our goal of supporting an
object-oriented system must  permit high-performance

communication in both object-oriented and non-object-
orienled environments.

We also recognize that our architecture must be
scalable to accommodaie large user and service
populations. As military networking expands to provide
near-universal connectivity, the range of services that
users of the network requue will also expand. In
particular, we expect that there will be increasing
information flow across service boundaries to suppert C-
operations. and it is cnucal that the HPDSA support and
not hinder that expansion. Therefore, the facilines
incorporated in the architecture are designed for efficient
large-scale operation (e.g.. thousands 1o millions of
hosts) to accommodate this expansion.

Finally. we accept as a goal that the HPDSA must
be as simple and ¢asy to understand as possible. While
high-performance operation is a requirement of this
etfort. it should not come at the cost of increased
complexity for the programmer or the user. The
programmer should be able to use natural abstractions in
apphications and to apply ¢niteria 1o those abstractions to
achicve high performance.

During the course of this project. we have designed
a distributed system called Photon that attempts to satis-
fv the above goals. The design is optimized to work in
environmenis where the ratio of communications latency
to computational power and bandwidth is relatively high
compared 1o what it is todav.  In other words, it antici-
pifes smprovements i communications bandwidth and
computational power, but assumes speed of light will not
improve.! This assumption implies that the architecturce
of the system must be able to accommodate greater par-
allelism and less direct feedback from remote locations
to achieve high performance.

Photon has incorporated a few key mechanisms to
accommodate high-latency environments. One of these
1s globallv-claimable futures talso referred 10 as globat
tutures). Futures [Halstcad Multibisp] define points in a
program where parallelism can be used while simulia-
neously specifying a result that will force synchroniza-
tion between the caller and the called function. Global-
lv-claimable futures allow this abstracted result to be
nassed to other computers on the network, where they
can be claimed by other programs requiring the data.
These globally claimable futures permit the data to flow
dircctly to the programs where the results are used rather
than conforming to an aruticial client/server distinction.
This fact eliminates needless “round-tnps™ and thereby
expedites program execution 1 high-latency environ-
ments.

Globally-claumable futures allow programs 10 ¢x-
plicitly declare their data depeadencies and to imphcilly
define available paralichsm. However. without proper
integration nto the programming environment, the con-
cept of globalty-claimable futures would be difficult 10

1.

Shoutd the speed of light increase at all. the system would <l
functon. but would probably benefit from redesign along w th
many of the physical sciences.




use and manage. To achieve this integration, we borrow
a concept previously used in the Argus system [Liskov
Argus] called language veneers. Language veneers per-
mit the basic functions of a d*stributed system to be in-
corporated into a high-level language through small svn-
tactic additions to the language. These additions are tai-
lored 1o the style and flavor of the language to provide
the most natural interfaces to the functions provided by
the underlying system. In our case, we concentrated on
defining a language veneer for the language C++. which
allows us to mate an object-oriented programming lan-
guage with an underlying object-oriented distributed sys-
tem. This veneer permits C++ objects and operations to
map onto corresponding distributed objects and opera-
tions. QOur veneer permils the programmer 10 use a very
natural and sequential programming style while actualls
invoking futures and data-flow mechanisms, The resuli
of this is that distributed programming in Photon can re-
sembie pat. 1 C++ programming.

To prove that these inechanisms can promote high
performance distributed applications, we wrote a serics
of demonstration programs using prototype implementa-
tions of these mechanisms. These ranged from simple
echo programs to parallel computations of the Mandcl-
brot set. The language veneer was demonstrated b
writing a set of class defimtions that allowed construc-
tion of very simple distributed programs through normal
C++ object definitions and references. While each ol
these demonstrations was hand-coded to demonstraic o
specific aspect of Photon. all of these demonstrations
make use of library functions that implement the basic
Photon concepts rather than an external “kernel”™. By
embodying Photon mechanisms within the user pro-
gram's address space. context-switching time within a
computing platform 1s eliminated. and no one process
becomes a bottleneck when multiple processors are used
in parallel.

These demonstrations are a tirst step in the develop-
ment of a distributed programming environment capable
of exploiting gigabit networks. parallel processors. and
multiple programming models. We believe that they m-
roduce new concepts to work around fundamental phys-
ical limits to the speed of distributed applications. As
processor and networking technologics evolve through
the end of the twenticth century. we believe that con-
cepts like these will play an increasingly important role
in defining distributed applications.

1.1. Document Overview

This document describes the environment, 1ssues.
and mechanisms involved in the design of Photon. our
high performance distnbuted systems  architecture.
While it attempts to provide a broad overview of the ar-
chitecture and the problems it attempts to solve, it docs
not present all elements of the design in depth. To avoid
unnecessary duplication, we refer readers wishing 0 un-
derstand the design in greater tlechnical detail to the fol-

lowing project documents:

»  Technical Report #7707, System/Subsystem Speci-
fication for Photon, A High-Performance Distribug-
ed Svstems Architecture, Jan. 1992,

+  Technical Repont #7708, Software Design Docu-
ment for Photon. A High-Performance Distributed
Svstem Architecture, Feb. 1992,

»  Technical Report #7709, Photon Software User's
Manual, Feb. 1992.

This document builds uvpon research reported upon in
our Technical Report #7619, High-Performance Distrib-
uted Systems Architecture Intenm Technical Informa-
tion Report released June 1991. That report described
the issues and background that we believed to be the
driving forces behind this project.  We have included
portions of that prior work in this repont for the sake of
completeness and convenience to the reader. This repornt
supersedes the prior interim repor! and attempts to sum-
marize the entire project effort.




2. High-Performance Computing and

Network Environment

The computing environment of the 1990s is the key
driving force for the HPDSA. Advances in computer ar-
chitecture, computer networking, and systems integra-
tion lead one to believe that existing distributed comput-
ing techniques will be scalable to an environment con-
sisting of gigabit networks, teraflop mainframes, and
ubiquitous access by users. While these techniques may
work, there are constraints imposed by physics that will
limit the performance of traditional techniques, and will
require us to consider significant changes in distributed
architectures.

Certainly the most visible advances in computer
systems technology have been in microprocessor speed.
We can get a sense of this advance by examiming the
speeds of single-processor workstations and using them
as indicators for compating in general. In 1985, the
68020 had just been introduced. and this was the first
32-bit microprocessor system actually delivering more
than 1 MIPS in an inexpensive workstation (Sun 3/50).
Today. the HP Apollo series 700, the IBM RS 6000. and
the Sun SPARCstation 2 all deliver in excess of 20
MIPS and some as high as 76 MIPS. The outstanding
question is. can the microprocessor designers and scu-
conductor houses continue this improvement over the
next five years?

All evidence currently indicates that not only can
they continue t0 improve at this rate. but the raic of im-
provement could accelerate. The largest contributing
factor to this acceleration is Reduced Instruction Set
Computer (RISC) technology. RISC technology has two
simplifying characteristics: the basic functions of the
system are small and simple. and hard problems to solve
in silicon can be pushed off into software. making the
chipe simpler vet  Simpler chips make it possible to pro-
duce working systems faster. and this, in urn, results in
faster systems sooner.

Figure 1 shows the basic processor speeds for each
year beginning in 1985, and a rough projection of this
rend through 1995. Several representative processor
families, including the Motorola 680x0 and 880x0. and
Intel 80x86, are shown in this graph. along wiih projec-
tions made by Prof. John Hennessy of MIPS Computer
Systems and R. Andrew Heller of the IBM waorkstation
division [Microprocessor Report]. An analysis of this
data shows that we have been seeing performance in-
creases of approximately a factor of 1.85 per year for the
past five years. and (his appears to be a conservative fac-
tor for the next five. This implies that we will have
chips in 1995 that compute more than 450 MIPS. Equal-
ly impressive is the prediction of more than 130 MIPS in
1993, Companng these estimates with what semicon-
ductor companies believe they are designing. these num-
bers are quite reasonable and can be considered a con-

servative estimate 2

It is imporiant 10 ask ourselves if we believe this 10
be reasonable growth. Certainly, there is no natural law
that guaranices the computing community exponential
increases in speed. In fact, any technology curve actual-
ly 1s more like an S curve, as shown n Figure 2. There-
fore, we have reason 1o be skeptical of continued expo-
nential growth. Presently, however, there do not appear
to be any significant obstacles to achieving the perfor-
mance shown in Figure 1. The technology used involves
shrinking the minimum line size of the chips, reducing
the voltages used on the chips 10 increase clock rate, and
executing multiple instructions per cycle 10 achieve fine-
grained parallelism. While these achievements are sig-
nificant, they are fairly straightforward from an eng:-
neering point of view, and they can leverage off existing
designs in supercomputers.  Furthermore, we have ex-
trapolated only the performance numbers for CMOS in-
tegrated processors. If we permit the use of more exotic
processes such as ECL and gallium arsenide, we can
even increase these estimates. However, CMOS will
continue to be the mainstream technolog: ior the fore-
seeable future, and therefore it provides a convement
lower bound.

Perhaps the most significant issue¢ npot shown in
Figure 1 is that of word size. At present, one of the dif-
ferentiating factors between supercomputers and main-
frames is that most supercomputers are considered
“true” 64-bit machines. whereas mainframes still use 32
bits for almost all integer and addressing operations.
However, as companies likc Digital Equipment Corpora-
tion and MIPS Inc. introduce chips ». ch as the Alpha
and M4000 respectively. this distinction will begin 10
vanish. In all likelihood. this change will be as signifi-
cant as the jump from 16 bits 1o 32 bits was in the 1970s.
and it will dramatically affect the way programs are
written and run, just as 32-bit processors did in the
1980s.

At present, we expect the jump to 64 bits in work-
station class machines 10 occur sorctime between 1992
and 1993. Not many systems other than paralle! proces-
sors are feeling a need for 64-bit address spaces at
present. Nonetheless, based upon technology announce-
ments such as the DEC Alpha architecture, we can ex-
pect all competitive workstation microprocessors to be
64-bit hy 1995, and that no significant new systems ex-
cept for personal computers will be designed around 32-
bit processors beginning then. Because of the installed
base of 32-bit processors. this change implies that
throughout the 1990s. distributed systems will have to
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Actually, these numbers already appear excessively conserva-
tive. BBN’s estimate was for 40 MIPS in 1991, and HP has
nearly doubled that with its series 700 model 750 at 76 MIPS.
Intel’s David House has publicly stated that the Intel P5/80586
architecture will offer performance in the 100 MIPS range i
1992 [EE Times]. Digital Equipment has announced their
Alpha chip should result in workstations running at 150 Spec-
marks in 1992 and achieving 400 MIPS soon after.
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Figure 1: Projected Microprocessor Performance in MIPS

support both 32-bit and 64-bit architectures. It also im-
plies that distributed systems will become increasingly
heterogeneous with regard to word size as well as in-
struction set.

Compared with computer systems, communications
technology has been relatively simple to evaluate until
the last few years. Communications bandwidth cost and
performance were inversely proportional to the distance
over which the communication occurred. This resulted
in lIocal area networks having the highest bandwidths
and the lowest cost per bit transmitted, and wide-area
networks having the lowest bandwidths and the highest
cost per bit transmitted.

This relationship can be seen easily by comparing
Ethernet, as an example of current local area network
(LAN) technology, with the Terrestrial Wideband Net-
work, an example of wide area network (WAN) technol-
ogy. Ethemet provides a peak bandwidth of around 10
Mbits/sec and can provide communications over a dis-
tance up to around 1 mile. Worst-case transmission
latency is on the order of tens of microseconds to any
point on the Etheret. The TWBNet, on the other hand,
provides peak bandwidths of 1.44 Mbit/sec, but can
provide national and international communication, How-
ever, worst-case transmission latency is also worse,
reaching values of 250 milliseconds when satellite links

are involved.

Because of the diverse characteristics of WAN and
LAN technologies. the most successful large-scale
communications strategics have been combinations of
the two, The premiere example of such a combination is
the Defense Research Intemet. In the Intemet. local
communication usually takes place over a LAN. Since
the vast majority of data sent on a network tends to be
addressed to loca! users, the high bandwidth of the LAN
1s used to provide low-cost transmission whenever
possible. Data to be transmitted to areas not served by
the LAN is sent by a gateway onto one or more
imermediary networks. The data only travels as high n
the hierarchy of networks as is necessary for it o be
transmitted to its destination. This permits expensive.
long-naul neiworks to be used only when long-haul
communication is required, The Internet thereby makes
cfficient use of the pricing and bandwidth characteristics
of boih LANs and WANs for achieving global
communications.

In the 1990s, this formula relating bandwidth,
coverage, and communications cost is likely to become
obsolete and thereby change our ways of thinking about
communications networks, at least within the continental
United States. The technology driving this change is the
deployment of large amounts of fiber-optic cable by the
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regional, national. and international phone compames.
To date. most of this deployment has taken place
between switching offices of the telephone companies.
and therefore has been largelv invisible to the
communications consumer. However, the technology 1s
now becoming visible in the form of new services such
as SONET and BISDN, which are available 10 alimosl
any subscriber with the need for high-bandwidth com-
munication, National and world-wide packet networks
such as the NREN and DARTNET are providing peak
access bandwidths of between 1 and 45 Mbits/sec. today
and will reach gigabit speeds within the decadc.

One aspect of WAN communications that will nol
improve as significantly as it has in the past is latency.
the time it takes for a message to travel from one point to
another. In the past. network vendors have been able to
improve latency by using higher bit rates for network
host interfaces and techniques such as cut through ' in
packet switches. However. no matter what improve-
ments in technology occur, network latency will be fun-
damentally constrained by the time it takes light to travel
between those two points. While use of fiber-oplic tech-
nology may permit sending bits at a rate n excess of !
Gigabiifsec from Boston to Los Angeles, those bits can-
not arrive in Los Angeles any sooner than 14 mithisec-
onds after they are sent (assuming a 2500 mile. straight-
line, fiber link between Boston and Los Angeles). Fur-
thermore, we cannol expect (o receive an answer from
Los Angeles any sooner than 28 milliseconds after we
send the question from Boston. A way to think about
this constraint 1s t0 imagine interstate highways between

. Cut through 1s a technique where a packet-switch can begin
transmiting a received packet as soon as il has read its header
and knows where it should direct it. In essence, this allows the
packet 10 begin transmission along a new link before it has
been fully received on a previous one. thereby reducing latency
due to the intervening packet switch,

Boston and California that have 4000 lanes, but with a
strictly enforced 55-mile-per-hour speed limit. While
these roads can handle significantly more cars than ones
with four lanes. this increase in capacity does not change
the ume it takes to get from one coast to the other.

While these best-case latency numbers are very
good. they are within an order of magnitude of the laten-
cies we are experiencing on wide area networks today.
Therefore, while wide area bandwidths are going to im-
prove by almost three orders of magnitude (1.44
Mhbits/scc 1o 1 Gbit/sec). cross-country latencies can at
most improve one order of magnitude (250 milliseconds
to 14 miiliseconds. one wav). Therefore, the ways we
use our networks will have to change qualitatively to
achieve performance improvements propostional 10 the
increase in bandwidth. Distributed svstems in particular
will have to recognize the latency constraints inherent in
WANSs and incorporate facilities to initigate their effects
on programmers and applications.
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Discussion

Example Applications

We chose (0 evaluate a small group of distributed
applications before we started our HPDSA design. We
believe these applications to be typical of classes of
problems solved by distributed systems. We did this to
provide a firm technical foundation for design decisions
and to ground our architecture in the needs of real world
systems. By determining the architectural and perfor-
mance needs of these applications, we can extrapolate
those needs into the a list of requirements for our
HPDSA. Furthermore, these applications provide us

-6-

with a basis for evaluating the features of our design
after it is complete.

3.1.1. Technology Validation Experiment (TVE)

The first application we considered was the Tech-
nology Validation Experiment or TVE [Schroder
TVEL][Schroder TVE2]. This application was based
upon a collection of programs written by MITRE to sim-
ulate the detection, tracking. and weapon engagement of
missile threats during their boost phase. The distributed
version of the system was created using Cronus [Schantz
Cronus} to validate its ability to incorporate existing
code in a distributed environment.
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The overall TVE simulation system cossists of
three major sections: (hreat generalion components.
simulation components. and a display subsystem for
monitoring the results of the experiment. The threat
generation computes trajectories and orbital propagation
for a collection of simulated attacking missiles. The
simulation components then generate sensor data based
upon these trajectories. filter that data, evaluate feasibili-
ty of intercept by orbiting weapon assets. and perform
weapon assignments. The display system presents the
th. . ats and the results of the simulation to the user of the
system. A simplified diagram of the application and the
application’s atributes are shown in Figure 3.

The TVE exhibits several interesting characteristics
with regard to the underlying distributed architecture. In
essence. this application has been decomposed by func-
tion. and each function has been placed n a scparale
module. The distributed system provides communica-
tion and synchronization among those modules. but this
ts largely limited to data translation and flow control.

The communication is simple, point-to-point. and one-
way: and no significant use 1s made of objects below the
module level.

In many ways. these characteristics are typical of a
straightforward data-flow application. Each specialized
module waits until it has the data it needs. Once a mod-
ule’s inputs have been supplied. it performs a computa-
tion. sends the output of that computation on to the next
module. and waits for more input. All synchronization
and flow control is provided by the distributed system’s
communications mechanism, and the longest path
through the system sets an upper bound on how respon-
sive the system can be.

3.1.2. Mandelbrot Set Computation

The second application we looked at was the com-
putation of the Mandelbrot Set by a collection of com-
puters. This computation is basically the classification
of points in the complex plane into categories of conver-




gence or divergence based upon successive evaluation of
a function. This classification of the emire complex
plane is computationally expensive. but this computation
can be run in parallel easily because the classification of
each point is independent of that of all other points in the
plane.

This example is representative of parallel process-
ing applications programmed using a fask bag model
(sce Figure 4). The basic concept is that there are one or
more processes that create descriptions of work to do,
and those descriptions are then placed in a heap or rast
bag. Al the same time there are several compulte server
processes that request work descriptions from the task
bag, perform the computation described, and retumn a re-
sult. The results are then collected and displaved. usual-
Iy by the process that initiated the computation.

One interesting aspect of this application is that 1t
uses multiple computation servers that are identical in
function. The number of computation servers available
is not significant to the application; it will run properlv
with one computation scrver or one kundred. By struc-
turing the application to usc this task bag model, the ob-
ject code becomes independent of the number of proces-
sors used to run it,

Furthermore, provided the number of points to be
classified is large, the computational load is automatical-
Iy balanced across all these processors regardiess of their
relative speeds. Slower processors will request new
work relatively slowly while fast processors will request
work more frequently. This behavior maximizes use of
all computation servers available 10 the computation and
provides maximum throughput.

For extremnely large computations such as factoring
many-digit composite numbers. the user may want (o use
hundreds or thousands of computation servers. This
neced introduces a requirement that the computational
node with the task bag be able to communicate with hun-
dreds or thousands of other machines simultaneously.
Aitemnatively, the task qucue may have to be distributed
across several processes to avoid communication and
processing bottlenecks.

3.1.3. Pllot’'s Assoclate

This application is a theoretical collection of pro-
grams that assist a pilot in threat identification and
weapons targeting. The model used i1s one where many
sensors provide information regarding possible threats
around an aircraft. As information regarding these pos-
sible threats arrives, the information is posted in a com-
mon data structure. Multiple threat assessment process-
es examine the information posted in this databasc asyn-
chronously 10 determine which threats are most danger-
ous to the aircraft, and these threats are identified to the
pilot for action, The schema for this application is shown
in Figure §,

In many ways, this application is a synthesis of the
first two. Data is still flowing from sensor processes 10

threat assessors. but this flow 15 mediated by a common
data structure or blackboard. Multiple threat assessment
computations occur simuhtancously, and these provade
dynamic load balancing.  Finally, the applicabon can
make use of any aumber of sensor and threat assessment
processes witheut modification and has some inherent
fault-tolerance. Should a threat assessor or sensor fail,
only data associated with that module with be lost, and
all other computations will be able to continue,

Of particular interest in this application 1s the fact
that the nput and assessment processes are only looseh
coupled. The sensor processes store data in the black-
board as it becomes available. without regard for wheth-
er the previous data has been read vet or not. Similarly,
cach threat assessment process acts upon the available
threat information 10 determine the best target at this
moment, without regard for explicit synchromization. Al-
though it ts drasucatly simplified. this model 1s typical of
real-time systems that must be able 1o function tn spite
of possiblc “input overload™ scenarios. Therelore. we
must ensure that our systern be able (0 support Joosely-
coupled as well as explicit synchronization techniques.

While it may not be readily apparent. this applica-
tion is representative of a larger group of systems such
as shared workspace or conferencing applications. We
mention these systems because they have broad applica-
tion within military command and control environments.
They differ because people represent the sensors and
threat assessors in conferencing and shared workspace
svstems while the pilot’s associate application uses auto-
mated subsystems in those arcas. Nonetheless, the is-
sues of noncentralized control. loose synchronization,
and shared workspace are common between the two ap-
phicatton areas. We believe thal by addressing the issues
raised by the pilot’s associate, the HPDSA should be ¢a-
pable of supporing a wide range of blackboard and
shared-workspace syvstems. including electronic confer-
encing.

3.1.4. Advanced Simulati~n

Our fourth distributed application is based upon
battlefield simulations such as those implemented in the
DARPA Advanced Simulation Program. In this type of
simulafion, each vehicle on the battiefield 15 simulated
by a separate computer on the network. Each vehicle
simulator broadcasts a packet describing its position and
appearance to all other simulators periodically.  Every
vehicle simulator is responsible for modeling its behav-
ior and ats imeractions with other vehicles by listening to
all the broadcast packets from other simulators. If a sim-
ulator does not hear a new position and appeararce
packet from another simulator it is interacting with. it
extrapolates the remote machine’s appearance and posi-
tion from the last data it had: therefore, the system toler-
ates unrehiable communication. Furthermore. to enhance
reahism, should a simulator fa)l during a simulation, an-
other simulator will repeat its state and appearance pack-
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ets until the simulator comes back on line. A computa-
tional schema is shown in Figure 6.

This simulation application is an object-oriented en-
vironment where the objects correspond one-10-one with
the computational nodes of the network. It is stmilar to
the blackboard-based pilot's associate application be-
cause of the loose coupling between the various simula-
tors. However, unlike the pilot’s associalte. the central
blackboard is distributed throughout the nciwork. All
simulators maintain their own view of the stite of the
world and update it according to broadcast packets from
other simulators.

This application also differs from the previous ap-
plications because it attempts to provide object persis-
tence even when the simulator representing a specific
object fails. Thercfore. while objects are usually
mapped one-to-one to simulators. that mapping can
change as the result of falures.

One final aspect that is signilicantly difterent m this
application is its use of communication. This system re-

quires the use of timely broadcast or multicast communi-
cation. While it can tolerate unreliable distribution, the
structure of the system demands that every simulator
hear most packets sent by all other simulators and that
all packets be delivered within a fixed time period re-
ferred to as a simulation frame. This requirement differ-
entiates the system trom many other applications and re-
quires support for this timely delivery from the underly-
g distnibuted operating svstem,
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4. Issues

Based upon our studies of these applications. we
constructed a list of issues that we believe must be ad-
dressed by the HPDSA. These issues are presented in
the forms of questions that features of the architecture
should address. These issues are grouped into the fol-
lowing areas.

»  Communications

»  Computation

» Binding

+ Naming

+  Fault-tolerance and correctness
«  Resource Allocation

Each area will be discussed separately in the following
sections.

4.1.Communications

Our sample applications demonstrated a wide range
of communications needs. Next-generation, high-band-
width networks will also dramatically change the charac-
ter of the infrastructure that must service those needs.
Therefore. our architecture should address the followine
COMMUnNICations issues.

How do we deal with proportionallv greater comniyn;-
carions latency? As we described in section 2. the next-
generation of computer networks will have proportional-
ly greater latency than networks of today. In other
words, their latency will not improve nearly as dramau-
cally as their bandwidth will. Our new architecture must
recognize this qualitative change in network characteris-
tics and provide mechanisms for mitigating its etfects,

How do we model scheduled versus wunscheduled com-
munications (e.g., connection-based models versus data-
gram models)? To date. most distributed applications
have been designed for specific networking substrates.
and have not tried to negotiate their communication

and some (such as advanced simulation or real-time vid-
eoconferencing) may be degraded by lawency variauons
and retransmissions implied by this type of delivery.
The distributed architecture must be able to accommo-
date the specific communications needs of applications
without overloading them with unneeded communica-
tions features.

How does the user specify the communications needs «f
the application? Given that the architecture must be
able to satisfy the application’s necds, how docs the ap-
plication specify those needs to the system? Distnbuted
applications are often insulated from the communica-
tions medium, and therefore have had little opportunity
1o control their communications environment.

How do we provide communications to many objecis a!
once? In many systems, there are hmits 1o the number
of communication paths or vi—ua! circuits that can he
open simultaneously. This type of restriction should not
be made visible 10 the applications programmer. The
user should be able 10 work with as many or as few ob-
jects as are required by the application. and the distribut-
ed operating system should support that use without bur-
dening the programmer with ¢xcessive communicauons
bookkeeping.

In some communications environments, multicas!
facilities may be available. The use of multicast proto-
cols can substanually reduce communications cost n
these environments and can greatly improve the scalabil-
ity of the system. However. because not all environ-
ments support multicast communication, the system
must be able to make intelligent decisions regarding
when multicast protocols can be used.

How do communications abstractions interact with the
object-oriented programnung model? Most object-orni-
ented programming languages do not incorporate the
concept of a communications model because all object
interactions are containcd within one process and are
perfectly reliable.  When we start locating objects at
other nodes of the network. we must add concepts of
communications errors and failure into the object model.

needs with the communications system. Next-genera- 49 Computation

tion applications will make specific demands of the com-
munications infrastructure. such as low delay. best-¢tfort
delivery. and reliable delivery and sequencing. Some of
these demands will be known in advance (i.c.. we'll
know the needs are there when we design the applica-
tion), while others may not be known until the applica-
tion is run. We require facilitics within the HPDSA for
the application to declare its communications needs. The
distributed system will then map those nceds onto the
available communications protocols and interfaces.

Whar choice of communication semantics must he pro-
vided (e.g., reliable delivery, rapid delivery, sequenced
delivery)? Not all applications require reliable delivery.
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Because we must support parallel as well as distrib-
uted platforms in our architecture. we must clearly de-
fine a model of computation that includes parallelism.
Arriving at this model of computation requires that we
address the following issues.

How do we express parallelism in a distributed applica-
tion? Compute-intensive distributed applications may
improve their performance significantly by running pans
of the computation in parallel. However, traditional se-
quential languages with synchronous Remote Procedure
Call (RPC) modcls provide no opportunity to express




“is parallelism. The distributed system architecture
must provide ways for the application to relax its se-
quencing and to express its parallelism to make maxi-
mum use of multiple processors in the distributed envi-
ronment,

How do we bind our parallelism abstractions to real
computational elements to maximize the performance of
the computarion? The specification of parallelism by the
application should be based upon the structure and se-
quencing requirements of the computation. However,
this expression of parallelism may result in significantly
more computations that are able to run in paraliel than
we have processors to actually run them. For examplc,
the computation of the product of two 100x 100 matrices
can be divided into 10,000 independent computations.
However, it is not likely we"d have available (or want to
pay for} 10,000 separate processors to perform this com-
putation. Therefore, the distributed system must provide
mechanisms for mapping abstract parallelism to real
computational elements in ways that optimize perfor-
mance, cost, or other paramelers,

How do we express data dependencies within a distribui-
ed application? Once we have established methods of
defining parallelism, we must ensure the correctness of
the computation, regardless of the amount of parallelism
being used. Traditionally. this is managed by the pro-
grammer by writing his or her program in serial fashion.
with the assumption that every statement cannot proceed
until the previous statement has finished. If we are
going to be able to exploit arbitrary parallelism within a
distributed system, the distributed system needs 1o know
what dependencies are required for correct operation and
what statements are independent from one another.

How do our computational abstractions synchronize
with one another? Once we’ve provided paralielism ab-
stractions within our distributed application, we must
also provide ways for those computational abstractions
to work together to provide consistent and deterministic
results. In our matrix multiplication example, we would
not want to print out the product matrix until we were
confident that the computation of all 10,000 elements of
the matrix had finished. Similarly, we would not want to
update a record of a database at the same time that it was
being written by an independent process. These syn-
chronization methods must work in both distributed and
parallel contexts and must be efficient enough that they
do not significantly alter the overall performance of the
application.

4.3.Binding

A distributed system must permit servers and cli-
ents t0 communicate. While these communications {a-
cilities might be completely unstructured, it is useful to
maintain some sense of connection between the two ¢nti-
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ties, particularly 1o preserve ordering of operations, reli-
able transmission. and error detection and reporting.
However, the maintenance of a connection raises the fol-
lowing issues.

How do we create bindings between clients and servers?
If we wish to provide specific classes of service to an ap-
plication (for example, we wish to be able to guarantee
ordered, reliable delivery for all operations on a specific
object), the distributed system must provide ways for the
client and server to maintain state concerning their com-
mumnication. This state information might include what
operations are outstanding, which operations have com-
pleted. and what types of exceptions might be pending.
In essence. this maintenance of state at each end of the
communication path defines a communications connec-
tion or binding between the two entitics. Since we de-
sire that applications be able to specify performance and
delivery requirements for their communications channels
(as noted in the communications section above), the dis-
tributed system must have the ability to set up bindings
between clients and servers as necessary to fulfill those
requirements,

At what time are these bindings creared” The exislence
of client-server bindings implies that they are created at
some time and destroyed at another. While simple. stat-
ic bindings might be acceptable for some applications.
parallel applications (such as the Mandelbrot Set Com-
putation) may require a more dynamic. unscheduled type
of binding to perform load balancing. Furthermore,
bindings must be dynamic enough to cope with server or
network failures; should a server fail, the system may
need to establish a new binding to a backup server.

How long do these bindings last? While bindings are
useful when there are many operations being performed
on a single object, they stop being useful when all opera-
tions on an object are completed. Furthermore, there is 3
cost to keeping unneeded bindings because they require
storage of state in both the client and server. Therefore,
the distributed system requires mechanisms for eliminat-
ing bindings once their usefulness is over.

4.4.Naming

How do we name objects and services? Distributed ap-
plications need ways to refer to objects and services with
which they may not have communicated previously, A
convenient way of permitting this reference is to attach
names {0 those objects and to allow those names 10 be
stored in messages and catalogs among the components
of the system. The distributed system should provide a
naming architecture for objecis and to provide ways of
deriving addresses for objects from their names.

How do we map descriplive requiremenis (names, prop-
erties, keywords) to servers? While hierarchical names




are one method of locating objects, some applications
may need to reference servers based on other criteria
such as distance, available bandwidth to the server, ad-
ministrative domain, and so on. While these properties
can be expressed in a hierarchical name space. the con-
cept of locating objects based upon properties is more
akin to a database lookup by attribute than to a name
lookup. Therefore, a distributed system may need to
provide ways of locating servers and services other than
just by name.

What format and scope does an object name have? Ob-
ject names need to be manipulated by both people and
computers. While variable-size, alphanumeric names
such as /my/favorite/files may be convenient for
people to remember, they are cumbersome to use if they
are the only way of communicating with an object. At
the same time, names that computers can manipulate
easily (e.g., 0x35fc9987) are not convenient for people
to work with. We need to provide both ease of use and
efficiency in our distributed system.

Similarly, we need to define the scope of these
names. The scope of a name could be strictly local (e.g..

ing of that instance of shared data. Object-oriented pro-
gramming models integrate both types of access by sup-
plying procedures for operations upon obj cts and pub-
licly defining the data types involved in those opera-
tions.

How is this computation model integrated into the pro-
gramming language? The mechanisms defined by the
underlying distributed system must be presented to the
programmer as part of the language being used to build
the application. Providing only one version of these
mechanisms for all languages is difficult because not all
programming languages work from a common set of as-
sumptions. For example, a procedural interface to the
distributed system’s mechanisms would not be easy 1o
use in a strictly functional programming language. Sim-
ilarly, object-oriented interfaces are likely to be clumsy
1o usc in non-object-oriented languages unless the inter-
faces are carefully designed to work in both environ-
ments. The HPDSA must establish natural ways to use
distributed facilities from existing programming lan-
guages.

only valid on the current machine), cluster local (only 4.6.Fauit-tolerance and Correctiiess

valid in the current administrative domain). or global
(valid from any machine participating in the distributed
system). Names with global scope could be absolute
names (i.e., unique throughout the distributed system) or
relative (qualified by a concept of current location within
the name space). The HPDSA must resolve these issues
to provide a coherent naming strategy for objects.

Can an object name specify more than one cbject’ The
name space provides a many-to-one mapping of alpha-
numeric strings 10 objects. However, a one-to-many
mapping of alphanumeric strings to objects might also
be useful. For example. one might wish to have a single
name for a service such as tire_servize and have that
one name be a reference 1o any of a number of time serv-
ers. Similarly, one might want to refer to a computation
made up of many clients. servers. and objects by a single
name for the purpose of starting. stopping. monitoring.
and debugging the computation.

4.5.Programming Model Issues

What is the model of computation offered to the
programmer? An integrated distributed system extends
the programmer’s model 1o include new collections of
data and new procedures for manipulating that daia. The
Remote Procedure Call model provides the programmer
with access to procedures located on remote machines.
but does not permit direct access to the data located re-
motely. A virtual shared memory model provides direct
access to remote data and does not require the program-
mer to use specific procedures for that access. However,
implicit in this shared memory model is the assumption
that the application understands the structure and mean-
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The demands of command and control applications
have required the devclopment of systems that are capa-
ble of continuing execution in the presence of the failure
of one or more components. Distributed systems provide
a natural layer at which to inlegrate fault-tolerant mecha-
nisms. Furthermore, the inclusion of fault tolerance
below the application layer permits applications to have
some fault tolerance without any knowledge of the
mechanisms or policies involved in providing this facili-
ty.

However, when we consider integrating fault toler-
ance mechanisms with parallelism and high latency
communication, new problems arise with regard 10 the
correctness and consistency of operations. In particular,
it may be impossible to guarantee fully consistent, si-
multaneous views of collections of data to muitiple dis-
tributed users of a database. without incurring significant
performance penalties. As an example of this problem.
consider the costs of doing two-phase commit transac-
tions when the round-trip latencies are greater than the
compultation to be performed on the data obtained.
Under these conditions, it is possible for fault tolerance
mechanisms to have first-order effects on computation
performance.

These problems force us to confront the following
issues when addressing fault tolerance in the HPDSA en-
vironment.

How do we provide fault tolerance in a high-latencvy
communications environment? Many fault tolerance
schemes require the use of synchronization protocols be-
tween replicated servers. These protocols allow the
servers to coordinate data updates and to provide a con-




sistent view of objects across the entire distributed sys-
tem. However. the performance of these protocols may
deteriorate because of the lack of improvement in nel-
work latency compared with processor speed and nel-
work bandwidth, Therefore. our design choices for fault
tolerance should take this relative increase in latency
Mo account.

Can we provide apparent atomicily of complex opera-
tions involving many objects? Many applications require
complex operations to appear indivisible or atomic, even
in the presence of failures of any of the computers in-
volved in the computation. For example, a money-trans-
fer application for a bana might consider the withdrawal
of money from one account and the deposit of that
money to another account to be an atomic operation. 1f
the computer maintaining the deposit account fails in the
middle of the operation. there should be no withdrawat
of money from the first account; a withdrawal without a
comresponding deposit would violate the atomicity of the
operation. While guaranteeing this atomicity of function
is straightforward in applications running entirely on onc
processor. it is more difficult 10 guarantee atomicity in a
distributed environment because there are more types of
failures that can occur.

4.7. Resource Allocation

One of the purposes of a distributed system is to
permit more efficient use of an organization's resources
in satisfying its computational needs. For example, an
organization might use idle cycles on its workstations at
night to run a parallel program that optimizes the work
schedule for the next day. The organization benefits di-
rectly from this application because it makes use of re-
sources that would otherwise be wasted. However, this
same sirategy would be a poor solution if those worksta-
tions were to be used by a night shift of programmers.
Therefore, it is desirable for organizations to have re-
source management facilities that allow flexibility and
dynamic behavior based upon observed data. While this
is not an explicit goal of the HPDSA, it is useful to con-
sider some basic issues in resource management during
its design.

How do we optimize the use of resources for a computa-
tion? Typically, automatic forms of resource manage-
ment are done at each node by the machine’s operating
system. In most time-sharing and batch systems, jobs
are scheduled according to priority and resource usage.
and one or more operators monitor the progress of the
system. In essence, the operating system is implement-
ing a resource management policy defined by the opera-
tors.

A distributed system makes resource management
more difficult for the following reasons:
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» A job can be executed in many different ways (e.g..
a job can be run on an expensive fast machine. an
inexpensive slow machine. on several machines at
once)

« A jobcan be optimized across more resources

« A job can be optimized according 10 a wide range
of criteria (cost, performance, network bandwidth.
total job time, etc.).

To permit effective resource management, the distribut-
ed system must supply as much information as possible
regarding the needs and status of a computation while
providing maximum flexibility in controlling that appli-
cation. «

How do we determine the correct dimensions of the ap-
plication to optimize (e.g., performance, security, cor-
reciness)? Distributed applications can use many types
of resources 10 accomplish their tasks. These resources
include CPUs. storage devices. networks. graphics de-
vices, sensors and specialized computational elements.
such as vector and parallel processors. Each resource
has a multidimensional cost associated with using it.
That cost may include amortization of the purchase price
of the device. maintenance cost, and consumables cost.
Similarly each resource provides a multidimensional
benefit to the computation, including decreased compu-
1ation time. improved communication 1o the user. and
the storage of resuits. Therefore, providing effective dis-
iributed resource management imphes that we attempt 10
maximize a multidimensional benefit while minimizing
a multidimensional cost. Performing this optimization
requires that we understand what dimensions are most
imponant to the users of the system. and implement re-
source management policies and priorities that reflect
that understanding.




5.

5.1.

Architecture Description

BBN has designed a high performance distributed
system architecture whose mechanisms addresses the is-
sues noted previously. Photon’s structure is designed to
provide high-performance operation and data transfer
while retaining an object-oriented programming model.
Because Photon is object-oriented, it provides features
such as abstraction, encapsulation, and well-defined cli-
ent/server interfaces. At the same time, it includes ab-
stractions that support parallelism, explicit data depen-
dence, data streaming and redirection, and location bind-
ing to enhance performance. Finally, it provides these
features in a modular and customizable way that permits
implementation on a wide variety of platforms.

The following sections describe the basic architec-
tural mechanisms of Photon. These features address the
following arcas:

Layered object architecture
Kemel-less architecture
Multiple layers of naming
Explicit location mechanisms
Dynamic method binding
Glooal futures

Sequences

Distributed shared memory
Language veneers

® & o & @ o o o o

Each of these features will be described in more detail in
the following subsections.

Layered Object Architecture

The fundamental building block in Photon is the ob-
Ject. These building blocks may or may not correspond
to objects in an object-oriented programming language.
However, they do have two important characteristics in
common with those in object-oriented languages:

+ QObijects are instances of classes that define both the
data representations and operations for manipulating
the data for that object.

» The implementation of objects is encapsulated and
hidden from programs using those objects.

Photon extends these basic concepts to a distributed
object environment. This means objects can reside on
multiple machines in the environment and operations
can be requested of them by any machine. An object is
an entity to which program requests can be sent and
from which replies may return. Objects may or may not
have internal state and this state may or may not be
persistent.

Our definition of objecls is very general because we
do not wish to limit the ways in which objects can be
manipulated. A very high performance distributed
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system should have the flexibility to optimize how
operations are performed without causing the behavior
of those objects to change. For example, if the system
recognizes that a program and an object it manipulates
reside on the same machine, direct access to the object's
data can permit object operations that have performance
similar to a simple subroutine call. Howcver, the system
can only permit this type of optimization if it can still
guaraniee that the program performs the operation
correctly and that the object’s integrity remains intact.
Therefore, Photon limits the amount of information that
a program and an object are permitted to know about
each other to that specified in a public interface
description.  This restriction provides maximum
flexibility in the implementation of the object and
permits Photon to select dynamically implementation
strategies that maximize performance.

Objects are implemented in Photon by servers.
Servers are simply programs tnat represent one or more
objects and have a published set of operations that can
be performed on those obpjects. Servers are the
mechanisms through which objects are realized in the
system; if an object has no server, no operations can be
performed upon it until a server is created for it. All
Photon services are provided either by servers or by
code compiled or linked into the users prograr..
Because the built-in services provided with Photon are
also provided within the object model, new services
added by the user are indistinguishable from those
pro.. “cd by the system itself. Therefore, Photon can be
considered an extensible distributed system.

Communication with objects is performed
according to a protocol stack, as shown in Figure 7. Our
layering model is divided into three major sections. The
object layer is where most application programming is
done, and includes the Application layer of the OSI pro-
tocol stack. It also includes a non-OSI layer we refer to
as the Model Layer. This layer is where the concept of
proxy objects is introduced. and permits the construction
of arbitrary application interaction protocols (see section
5.10.3 for further descriptions of proxy objects). The
user uses object specifications, application code. and
Photon tools at this level to generate these two upper
layers of our protocol stack.

The intermediate layer of our model encompasses
the OSI Presentation and Session Layers. The code im-
plementing these layers is contained in libraries which
are linked with each Photon application or service pro-
gram. These layers are tailored to the language and plat-
form on which they are used.

The instance or platform layer of Photon includes
the Transport, Network, Link. and Physical Layers of the
OSI model. For hardware platforms with a native oper-
ating system (e.g.. workstations running UNIX), the im-
plementation of the instance layer is done in the underly-
ing OS. This approach allows us to exploit the optimiza-
tions and tuning that manufacturers perform for native
operating systems without having o reimplement it in
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Figure 7: Photon Protocol Stack Structure

the distributed system. It also permits Photon to be easily
ported to new architectures without the need to deal di-
rectly with the low-level hardware. However, by buiid-
ing Photon on top of a well-defined, simple instance
layer, we still retain the ability to port the system to
hardware that has either a specialized OS or no operating
system.

All Photon interactions with the protocol stack are
at the Session Layer (level 5) or above. Therefore,
Photen can select from a variety of network protocols,
local communication methods, or direct access methods
in communicating with an object. By strictly obeying
the layering boundary, we allow Photon the flexibility to
"short-circuit” layers 1-4 when convenient. At the same
time, this stnct layering also permits multiple protocol
stacks to be used for data transport. This ability to
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optimize communication strategy provides an
opportunity to enhance substantially communication
with objects through techniques. such as read-write
shared memory.

To accommodate both object-oriented and non-ob-
ject-oriented applications. we have designed language
veneers that allow the programmer to control the struc-
ture of the system from the application layer. In Photon,
the programmer writes language-independent interface
specifications that serve as the defining boundary be-
tween client and server programs. This interface specifi-
cation is then processed by Photon tools for the pro-
gramming language (o be used to produce language-spe-
cific interfaces for the data types and operations defined
by that specification. These language-specific interfaces
can then be referenced and modified by application pro-
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Figure 8: Photon Kernel-less Impiementation Model

grammers in the supported language. This application
program is then compiled and linked with the Photon hi-
braries to produce an executabfe program for that plat-
form. This program uses Photon network services 1o
Support execution.

This development paradigm is similar to that of
Cronus. In essence, the Photon language tools process
the interface specification to generate the application and
RPC/shared memory layers of the protocol. just as Cro-
nus genmgr translates the Cronus Object Definition
Language into the target clients and servers. However,
we extend this paradigm to permit the generation of arbi-
trary proxy objects instead of just RPC interfaces. This
extension permits the inclusion of caching. replication.
and communication protocols that would be excluded
from a strict RPC model.

Photon also differs from Cronus with regard to how
objects are related to services. While the basic address-
able atom in Cronus is the object. objects are operated
upon by managers. Managers are processes that include
the methods for operating on one or more types of ob-
jects and are themsclves Cronus objects. The use of
managers permits the creation of very fine-grained ob-
jects without incurring the overhead of having a process
created for each object. While we found this efficiency
argument compelling, we felt that managers were not
sufficiently abstract to be included in our model. Photon
attempts to complelely divorce the application from
knowledge of how an object is implemented. and we be-
lieve that should include implementation details such as
managers. Therefore. while Photon provides a class ob-
ject that can be addressed for the purposes of creating
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new object instances. we do not include the Cronus man-
ager abstraction.  All a client program knows is how 10
address objects and invoke proxy objects: all implemen-
tation below that level should be invisible except for de-
tails specified in the interface definition.

5.2.Kernel-less Architecture

The Photon architecture provides a multiple-layer.
abstract, programming model. However, this model
should be implemented in a way that permits these
layers to be collapsed and optimized for high
performance at run time.

Our  architecture  assumes a  kemel-less
implementation which permits communication to take
place directly between clients and servers without the in-
volvement of any intermediary processes other than
those inherent in the underlying operating system
(sec Figure 8). This structure eliminates context-switch-
ing between the Photon and application processes and
substantially decreases the amount of copying of data
and scheduling required for communication between cli-
ent and server. It also allows the application to invoke
Photon functions and routines without incurring the cost
of a system call.

These performance optimizations come at the cost
of increased process size. Each process in a distributed
application must now include within its address space all
the code necessary to do whatever form of communica-
tion 1t needs. We concluded that this cost was reason-
able based upon the following facts:




» The application and Photon code can cooperate
more closely tc optimize performance.

+  Because Photor can be layered on top of an exist-
ing operating system, it can make use of virtual
memory to reduce the impac+ of increased applica-
tion size.

+ The Photon code can be implemented as shared li-
braries, further reducing requirements on main
memory

» Running the Photon code in the user’s process and
at the user’s privilege level preserves the integrity
of the underlying operating system’s security
mechanisms.

« Al aspects of Photon operation are accessible and
visible during application debugging and testing.

While kernel-less implementation is not strictly required
by the Photon architecture. the performance. debugging.
and security advantages recommend its use.

5.3. Multiple Layers of Naming

Photon includes multiple levels of naming. Thesc
include symbolic names. location-independent or logical
names, and location-dependent or physical names
(see Figure 9).

Symbolic names provide methods of addressing
services that can be understood easily by people. Sym-

Lookup via Name Server

Symbolic Name

Location-independent Name

Locate Operation

Location-dependent Name

Figure 9: Types of Photon Naming

bolic names are usually alphanumeric strings such as 5.4, Explicit Location Mechanisms

MandelbrotComputeServer, Symbolic names are con-
verted into other types of names by a name service. The
name service is implemented as a collection of servers
that can be accessed by any Photon client. The function
of these servers is very simple: given a symbolic name.
they return a location-independent name.
Location-independent or Logical Object IDs
{LOIDs) are used to identify a service without being spe-
cific regarding its location. LOIDs are fixed-length
structures and are not necessarily easy to interpret other
than by machine. However, they do provide a unigue
identification for a service throughout the Photon sys-
tem and this identification can be either stored or used to
access servers through the Jocare operation. Note that
LOIDs can be resolved to more than one object or serv-
er. Protocol stacks supporting multicast addressing may
wish to associate multicast addresses with LOIDs.
Location-dependent names or Physical Object IDs
(POIDs) are names that specify the physical location of
an object in Photon with respect to the underlying com-
munications network. Use of POIDs allows the system
to associate an object with a communications link or
connection and thereby optimize the communication
over that link. These names are bound to the underlying
communications protocols the application wishes to use.
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Photon requires that a process know the location-
dependent name of an object before it can perform oper-
ations upon it. The location-dependeat name is discov-
ered by doing a /ocate operation on a location-indepen-
dent name. This means that even when an object may be
replicated on many nodes, the system will select only
one of these objects at the ime a client does a locate op-
eration. The client will continue to use that instance of
the object until there is a reason not to (such as an excep-
tion).

The use of an explicit location operation rather than
a transparent, dynamic rebinding at a lower level (e.g..
Cronus's broadcast locate) has the following advantages:

+  The locate operation establishes a binding between
the client and the server. By establishing a binding,
we provide the system with a way to reference this
particular communication path and a reference
point for exception handling.

»  The locate operation allows the client to establish a
location-dependent communications link to the
server. This permils optimization of the communi-
cations path for that object.

+  The communications needs of the application. such
as latency or bandwidth constraints, can be negoti-
ated with the servers and network Jayer at the time
of the locate operation. Should the underlying net-
work require reservations or the setup of a virtual
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circut, this can also be done at this time.

+  1f a virtual circuit is used. authentication of both the
client and the server can take place once at the time
of the locate rather than on every operation on the
object.

»  The application has an opportunity to modify its
behavior based upon the location and communica-
tion abilities of the object found.

The largest disadvantage of exphicit location is in
the area of fault-tolerance. Because we have expliculy
bound the client to the server, rebinding after the fanjure
of the server is not transparent; when a failure occurs. a
new binding must be negotiated by the clicnt. While an
unsophisticated application may wish to be shiclded
from this information. a sophisticated one might wish (o
take action based upon the failure. For example. an ap-
plication sending data to a replicated database mig'!
wish to do more batching of its data when serding 10 a
copy of the database over a high-latency link.

In general, explicit location will not be seen by the
programmer at the object level: Photon proxy objects
will often be capable of performing this binding trans-
parently to the clicnt programmer. Howcver. the lower
levels of the system will use explicit location to acquire
location-dependent names, and therefore the advantages
of the technique will be available to the sophisucated ap-
plication programmer and object designer,

5.5.Parametrized Communication
The relationship of Photon communication

mechanisms 1o concurrent  disinbuted  programming
paradigms, traditional object oriented systems and
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Figure 10: Interprocess Communication Mechanisms and Their Effects

physically shared memory and distributed computing
environments is illustrated in Figure 10.

One of the goals of the HPDSA is to promote con-
currency while supporting data flow, demand-driven.
pipelined, and shared memory programming models.
Data driven models strive to reduce execution time by
initiating concurrency in response 0 the availability of
results and reducing idle time spent on synchronization.
In these approaches. execution is started in response to
either regularly amriving results (pipelining), or asyn-
chronously arriving results (data flow). The data source
and data processing functions may execute concurrently
with each other and with the communication process.
thereby  improving  parallelism.  Demand-driven
approaches strive to reduce the amount of resource
required to perform a distributed computation. In de-
mand-driven data flow. inputs are computed and
supplied only when a processing function requests them.
In shared memory, computations execute concurrently
and values are transmitted as required.

In Photon. this range of paradigms is supported by a
uniform set of communication abstractions and an object
oriented. functional style of programming. Shared
memory objects allow data values to be published to
other processes (see section 5.9). Updates to these val-
ucs may be data- or demand-driven, depending on how
the methods for the object are implemented. However,
the application program making calls on the shared
object need not be modified. The method
implementations can also be written 10 adapt as delay
charactenistics change. Futures and sequences allow onc
client process o combine scrvers to perform o
computation, with one producing data and the other
processing the values as they are generated. They allow
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Figure 11: Communications Approaches for Various Application Requirements

values to be communicated directly between the servers.
without incurring additional communication or process
scheduling delays that occur with current RPC when
values are passed through the client. Language veneers
and proxy objects extend the current RPC notions of
automatic RPC stub generation to allow programmers to
export code and data along with caching strategy and
other algorithms to the clicnt.

There are several 1ypes of communication
requirements that might be specified by an application as
shown in Figure 11. The Photon architecture offers two
ways in which the choice of communication atuributes
can be made. In the simpler approach, attributes can be
applied to individual requests. For example, a program
can mark a particular future. sequence or memory chject
as unreliable or reliable, or associated with a particular
communication bandwidth for data streams or regular
updates.

Photon servers may also offer different physical
object identifiers (POIDs) for a given object. each with o
different set of service properties. For example. onc
POID might be used 1o support unreliable datagram
requests and another for establishing reliable
connections.  Some connection POIDs might also
support bandwidth reservation, which would be marked
on the property list.

The association of property lists for OIDs is a
promising framework for handling resource manage-
ment. For example, we might allocate a particular
bandwidth for communication with a class of objects.
Property lists would indicate when this was possible, and
special POIDs would be uscd to reference these objects
via the reserved communication class methods.

5.6. Dynamic Method Binding

Photon’s explicit object location and kemel-less ar-
chitecture permit the use of a technique called dvnamic
method binding. Dynamic method binding is a mecha-
nism through which the server can instruct the client
about what routincs should be used for performing
operations on an object it represents. This mechanism is
in keeping with our policy of the client specifying what
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needs to happen and the server specifving how 1t is to
happen. This technique can be used to optimize the com-
munications path between the client and the server with-
out requiring direct involvement by the programmer of
the client.

Dynamic method binding is invoked as pant of the
location of an object. When a client is bound to a server
by meuns of its physical name. the server engages in
negotiation with the Photon suppont code in the client to
identify the best communication paths between the (wo
processes. The server then insiructs the chient about
which compiled-in Photon routines to use to achieve this
communication. The client code stores that information
and uses # 1o select the optimal code for invoking the
object methods.

This technique was introduced 1n Photon to permit
the same program to be run in both distributed and paral-
lel environments without sacrificing performance in ei-
ther. Figure 14a shows the desired program structure for
an application running in a distributed environment. In
this case. a chient and a server are on the same local area
network; therefore, the client uses 1 al area network
communications roulines to tnvoke +  °r methods thai
operate on object X. However, whei 5 same applica-
tion is run on @ shared-memory par. :l processor. the
program structure shown in Figurc 14b 1s more appropn-
ate. Because both the chient and server are exccuting on
the same ccmputer {(albeit on different processors). they
can use shared memory for their communications path.
This eliminates the operating system from the commun:-
cations path. thereby significantly improving the com-
munications performance.

Ideally. one would implement dvnamic mcthod
binding by having the client and server dynamic lly link
their communication routines a1 the time the object is lo-
cated. While this 1s an elegant and general implementa-
tion. the facilities to implement true dynamic linking arc
not present in many cxisting compilers, linkers. and op-
crating systems. However, true dynannc hinking 1s not
absolutely necessary to provide dynamic methods, If we
assume that an application is linked with libraries for all
appropriale communications methods for a given plat-
form, then dynamic method binding only requires the se-
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lection of which library to use at run time (see
Figure 14¢). This selection can easily be done by means
of a modifiable dispatch table and requires very litte as-
sistance from the compiler. linker, and loader. While the
application will be larger as a result of including all the
communications libraries for a given machine, the use of
virtual memory minimizes this impact on main memory.
Those lLibraries that are never referenced will never be
paged into main memory, and therefore the working set
of the actual running application will not be significantly
different from that of an application that was bound 1o
only one set of libraries at link time.

5.7.Global Futures

Many techniques exist for allowing a single process
1o start and control several concurrently executing activi-
ties. These include multitasking. futures, and streams.
Multitasking approaches include the concept of threads
implemented by Mach [Rashid Mach]. In multitasking
systems, each uwead may be blocked waiting for a
different remote request. When the request is finally
satisfied. thread execution continues, guided by nomal
scheduling policy. Futures include the approach taken
by Cronus [Walker Cronus futures]. Rather than
blocking RPC requests until the value is returned, the
request returns a future which can be claimed when the
value is needed. A thread may have several pending
futures, and may invoke requests that create more.
Futures may be combined into a future set which can
then be used 1o block the thread until one of the sct's
valves has been received. Streams. such as those
iniplemented in Mercury [Liskov Mercury], allow a
client to submit a sequence of requests and then claim
the replies in the same order as the requests were given,
This allows client and server to execute in parallel. This
range of approaches is generally adequate for distributed
processing driven by point-to-point requests between a
single client and many servers.

The global future is an addition to the basic
RPC/call stream model. In the global future model. a
caller may issue remote procedure calls to various
servers and receive the results of these calls at a later
ume. The asynchrony inherent in the future mechanism
allows the client to issue many calls before receiving the
results of the first: this allows computation in the server
to proceed in parallel with computation in the client
since the client does not have to wait for results from
one call before issuing a second call.

Global futures extend this capability by allowing
the client 1o issue calls to several servers, with output
from a call executed by one server being transmitted
directly to a second server. This forwarding of data al-
lows computation in the server to proceed without the
client being a bottleneck between them. The
computation in the servers may also proceed in parallel.

A future is a typed value. It has a globally unique
ID. When the client directs the server to perform a
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computation, it issues an RPC, for example:

ObilD.operation(input_param_list,
output_param_list)

In a remote procedure call without global futures.
only the values of the input paramecters would be
communicated to the server, and later the values of the
output parameters would be sent back to the client by the
server. Only then could the client supply the valuc
received as an inpul parameter (o another RPC call o a
different server.

By using global futures. the client can causc a result
to be forwarded directly from one server to another
without its passing through the client (see Figure 12).
The client does this by specifying the ID of a global fu-
ture in place of one or more of the mnput or oulput pa-
ramelers. When a future is supplied instead of an output
parameter, it will usually specify a distribution list. The
distribetion list directs the server to send a copy of the
output value 1o each of the destination hosts in the list as
soon as the value is computed. When an input parameter
is specified as a global future, the server waits for the
value to arrive, binds the value received to the parameter
occupied by the future, and then proceeds with the oper-
ation requested. Since future IDs are allocated by the
chient without consulting the server. a client can set up a
flow of values from onec server 10 another with no
waiting for intermediate results. As a result. the joint
computation between the servers will complete as soon
as possiblie.

5.7.1. The Futures Port

We have defined an abstraction in Photon called a
port that is a unique identifier for the source or destina-
tion of a future value. This is unlike the TCP protocol.
where a port is a host-id, port-number pair, and a
connection is uniquely identified by two host-id port-id
pairs. In our architecture. we have arranged that just the
port identifier is sufficient to identify the source or desti-
nation of a future value. While the connection between
the server and the client is a simple two-way pipe with
daia flowing between two ends. the futures port may
communicate with multiple peers. Thus, given a client
and a number of servers, there the possibility of connec-
tions are possible between each pair of servers. as well
as with the client and each server. Whether the actual
operation of these connections is datagram-like or con-
nection-like is a function of each underlying protocol.

Layered above whatever protocol is used for
transport is the Photon inter-object protocol.  Protocol
data units in this protocol are called directives. When a
Photon peer wishes to communicate with another peer. it
sends one orc more directives to that peer.  An actual
connection will be established as necessary. using one of
the available transport protocols. or datagrams will be
used in one of the available protocol stacks. Directives
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Figure 12: Direct Forwarding of Global Futures

are used to invoke methods, provide the value of a
future, delete futares, and perform a number of other
functions.

5.7.2. Garbage Collection of Global Futures

A global futyre must be held by the producer of a
result until it is no longer needed. We use a system of
distributed reference counts to accomplish this. (Noie:
the server which produces a future will sometimes be
called the producer, and the various servers to which the
futures are directed called consumers.) When a future is
produced. it is held in a buffer with its reference count.
This reference count is normally set to the number of
destinations to which the future is to be sent. ie. the
length of the distribution list. A copy of the future is
sent 1o each consumer, and as each consumer
acknowledges receipt of the future, the reference count
is decremented. When the reference count reaches zero.
the producer may delete its copy of the future. This type
of reference count is called a source reference count.

There is also a destination reference count. When
the future is produced and forwarded to its consumer, a
destination reference count is included in the message.
When the consumer reccives the future, the consumers
local reference count is set from this value. Each
subsequent use of this future as an input value to an RPC
invocation will decrement this reference count. and
when the reference count reaches zero, the copy may be
deleted in the consumer's memory. The destination
reference count is supplied by the client as part of the
distribution hist. Destination reference counts are most
commonly set 10 one.
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Reference counting is suitable for a large class of
distributed applications, but not for all applications. If a
consumer needs 10 use a particular global future an
undetermined number of umes. its destination reference
count can not be set ahead of time in the client's RPC in-
vocation. Distribution lists also have a similar prob-
lesn—the set of recipients of a future may not be known
at the time of the invocation of the RPC. We handle
these cases with a slightly different mechanism.

The destination reference count of an item may be
set to -1. This indicates that the result should be held for
an indefinite number of claims. In this case, the client is
responsible for knowing when the destination’s copy of
the global future is no longer needed. When this condi-
tion is true, it sends & dele-e-future directive to the
consumer that is holding the copy of the future that it no
longer needs or to each consumer which has such a
copy. The delete-future directive causes the copy of
the future to be deleted regardless of its reference count.

The source reference count may similarly be set to
-1 1o cause the copy of the future to be retained by the
producer indefinitely. Once again, the client assumes
responsibility for the deletion of the future when it is no
longer needed. This is reasonable, since only the client
may cause the future t0 be sent 10 consumers—i.2. the
client knows when it will no longer issue any RPCs
which will requirc the future as input. There are several
reasons a client might direct a server to forward a value
well after it has been produced. even though in this case
the client could send this value instead of the future,
This could happen if:




1) the client does not want to store the value,

2) it may be sending directives to the two streams well
ahead of execution time, or

3) one or more such futures may be so large that it
would consume considerable bandwidth to forward
them.

5.7.3. Keeping Track of Live Global Futures

Although the client’s application program could be
made completely responsible for producing the delete-
future directives, the Photon library automates most of
the hard work. This is done by keeping a record of the
set of :.ource and destination futures with their reference
counts in the clients memory and by shadowing those
records in the server's memories. This mechanism
works as follows.

When a future is allocated. a record is made by the
library of the existence of this future in the future list.
This entry holds two reference counts: a copy of the
remote refe,' nce count and a local reference count set
initially to 1. The entries in this list are referred to as fu-
ture list entries. For simplicity, first consider an entry
for a future whose remote reference count has been set to
-1, indicating it has been created for indefinite use. The
first time the fuoture is used as an input parameter to a
particular consumer. a transmit-future directive is

Assume now that the client hears of the RPC fail-
ure. and knows that RPCs that were in the pipe after the
failure will not be executed. For items with indefinite
reference  counts, the reference count  structure
maintained by the library in the client’s memory allows
Photon to go through and decrement the future list refer-
ence counts as if the skipped RPC's had completed.
Thus. the application can proceed, possibly issuing other
directives or RPCs to server B, knowing that extra
copies of futures will not build up in server B's memory.

To handle errors involving items with finite refer-
ence counts. the library must also maintain a similar
reference count structure. The difference is that a c<-
iete-future directive does not need to be sent 1o the
producer when its remote reference count goes (o zero --
instead the future list and copy list entries can be simply
removed. When an RPC fails, this structure is sufficient
10 enable the library to know what futures will never be
consumed and issue delete-future (Or decremen: -
reference-count) directives to sec that they are de-
leted. When a server fails completely (indicated by
sending a RESET). resources in other servers that are
tied up can be cleaned up by the client. A server that re-
ceives a RESET from its client can clean up all resources
allocated by that client. A server that receives a RESET
from one of its peers can decrement the reference count
of futures waiting to be acknowledged by that peer,

sent to the producer, and the future list entry's reference 5.7.5, Race Conditions.

count is incremented by 1. An entry in a copy list is
made to record that a copy of this fusure will appear at
the destination's memory. and an entry in a RPC list is
also made to record the RPC that will consume the
future. As RPC completions flow back to the server.
they are matched up with the appropriate RPC list entry
and will then cause the one or more copy list entries to
be found and have their reference counts decremented.

When the client knows that it will not issue any
more RPC invocations with a particular future ID as
input, it executes a release-future call. This call
decrements the local reference count of the future and
copy list entries, but does not necessarily delete the fu-
ture list entry because the reference count may not have
reached zero yet. When the last RPC completion
referencing the entries also comes back, delete-future
directives can be sent to the various holders of copies of
the future.

5.7.4. Error Handling

We must consider how to handle garbage collection
of futures in the face of errors. For example, suppose a
stream of RPCs is being directed to a server B, which is
supposed to consume futures being produced by server
A. After a while, an RPC to server B fails, and some
RPC’s which were in the pipe after the error are not
executed. As long as our client's connection to server
B's port remains open, recovery is possible.
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We consider three kind of race conditions.

Race 1: A future arrives for a port which does not exist
yel.

This condition is prevented by the rule that a client
may not construct a distribution list which contains a
destination to which it does not already have a
connection.

Race 2: A future is needed from a port which has closed.

The various reference counting mechanisms in the
client and in the servers will assure that this condition
does not occur. When a client closes down a connection,
the close is placed in the pipe after the last RPC to the
corresponding server. The connection is not actually
closed until all RPCs and directives to that connection
have been executed. So if a port is closed, it was done at
the behest of the client. In this case. a RESET will be
returned, and the source can treat this as an
acknowledgement.

Race 3: A consumer tries to execute an RPC for which
the future has not been produced yet.

In this case the server waits patiently for the future
to arrive. It could poll for the value, but if the client




application is working properly. the value will be
forwarded as soon as possible anyway, so there is no
reason to poll. The consumer can poll with a hint if it
has never before heard from the producer before in case
the producer has backed off retransmission to the
minimum rate.

5.7.6. Handling Communication Fallures

We require our connections, oOr association,
between client and server to be maintained indefinitely.
By this we mean that connection halves do not go away
Just because communication has apparently halted. In-
stead, retransmission is backed off 0 a slow rate, but
state is retained. A connection is considered broken only
when a RESET is received from the other end indicating
that the connection at the other end really does not exist.

5.7.7. Forwarding a Global Future to a Second Level
Consumer.

Suppose a piece of server code (in server B, say)
which was supposed to be a consumer of a future wanted
to treat a future like a data item, and pass it on 1o another
server D. The client would not be able to reference
count this future properly. One solution is for the server
B to form its own future, which would forward the data
value 10 D as soon as it ammived at B. A second solution
is for B to send a transmic-future command to the
source of the future. It can do this provided it has not
acknowledged receipt of the future; once it
acknowledges the future, A may no longer have a copy.
Server B would also have to delay reporting completion
of the RPC in question until it knew of the completion of
the RPC on D which was going to consume the future.
If B has received the future. it can forward the valuc
instead. The disadvaniage of this latter method is that
the client no longer knows exactly what is going on.

element of the union is present. This is effectively the
same concept as the record variant in Pascal. An
application program is required to access the element of
the union specified by the tag—otherwise its behavior is
undefined. Therefore, the tag acts as a discriminator
among the various member elements of the union.

To illustrate, the proposed Photon Object Descrip-
tion Language (ODL) syntax for a tagged union is:

cantype C_rec: union,
tag: integer a,
choices are
1: integer 1i,
2: B_type b,
3: C_type c
end;

The case labels (1, 2. and 3 in the above) must be
values of the same type as the tag. Note also that the tag
is a labeled element of the umion which can be
referenced by its identifier.

The sequence mechanism is used to transmit a
pipeline (or queue) of values between two processes of
threads in Photon. A sequence of any data type can be
defined and used. like a future, as an argument to a
method. Sequence types may be used as arguments to
methods but are not first class data types because they
may not be used as fields of other data types. The value
of a sequence of T is an ordered set of values of
tvpe T. The sequence is constructed by put operations,
and accessed by get and next operations. The get
operation returns the current element. The next opera-
tion advances the sequence past the current element so
that the get operation will then return the next element
in the sequence. The sequence may also be terminated.
at which point the get operation will indicate that all
the elements have been read.

Instead, the forwarder. B, must take on responsibility for 5.9. Distributed Shared Memory

cleaning up any downstream communication errors.

5.8.Sequences

In Photon. the user sees no explicit concept of a
network connection. Instead a client program can invoke
operations specifying that the output of one operation 1s
to become the input to another. Inputs and outputs from
operations are typed. and Photon’s type system includes
features that effectively provide a connection as a data
type.
Photon's type system allows the same set of
canonical types to be defined as Cronus, with two
extensions. The two extensions are the ragged union and
the sequence constructor. These two extensions work
together to handle the case of a large flow of data
between twe processes or threads executing in parallcl.

A ragged union is a structure that contains a tag and
a union. with the values of the tag specifying which
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Photon borrows and extends the distributed
memory model of Munin [Bennett Munin]. 11 this
model, locations in a global memory space, called mem-
ory objects, are globally addressable. variable size seg-
ments that have a memory nipe. The type of a memory
object corresponds to the caching strategy used for
it—including the algorithm that controls distribution and
invalidation of updates. The caching strategies vary
based on how consistently and reliably memory is
maintained, and how classes of reference are matched to
the characteristics of multiprocessor, local, and wide
area network access. Photon memory objects are
effectively light weight objects that may be used to
accomplish shared-memory-style distributed program-
ming below the level of RPC and may serve as the
underpinning for the other Photon objects.

Formally. a Photon memory object is a tuple of the
following form:



<memory-ID, memorv-type, memory-type-infc,
memory-object-state, representation-type,
representation-value>»

and a memory-ID is a tuple of the following form:
<producing-hest, caérntrolling-hess,
unique-number, sedquence-number>

In some cases, depending on the memory type.
producing-host and controlling-host may be the same, or
only one of the two may be used.

A memory object catries a representation value
which may be written. read. mapped, and modified bu!
which does not in any way interact with its memory
type. It also carries some state associated with its type
(e.g., Jocks, “dirty” flags. etc), and may carry other de-
scriptive information specifically related to its memory
type. A Photon memory object carries a representation
type that is distinct from its memory type. The
representation type desiines how the contents of the rep-
resentation value are mapped into the data
representations of various machine architectures. This
roughly corresponds to the data structuring capabilities
of the Presentation Layer in ISO/OSI. In adding the
representation type 10 the memory type, Photon goes
beyond the Munin memory model. In the Photon ODL
one may define types and metatypes. Types are Presen-
tation Layer types described above. A metatype
corresponds 10 a representation type paired with a
memory type.

A memory object is one kind of Photon object.
However, a memory object may or may not be made
available for general access. A memory object may be
used to hold the representation of another Photon object
(which is not a memory object). and in this case. only
the higher level Photon object would have direct access
to the memory object which holds its representation. A
Photon object may also use other means to hold its
representation if the designer so wishes. An example
would be a Photon file object, which would store its
contents in disk storage rather than main memory.

5.9.1. Addressing of Photon memoty objects.

A Photon memory object is addressed by its memo-
ry ID. A memory ID maps directly to a Photon OID, so
that the set of Photon memory IDs is a subset of the set
of Photon OIDS. A program or executing an operation
upon an object may, theoretically, map a Photon
memory object into or out of its virtual address space. In
practice, the ability to map Photon memory objects may
be unavailable or limited due to nature of the local
operating system's. virtual memory system. However, a
non-mapping style of interface to the interface using get
and put operations is always available and can always

be used to invoke any capability of the Photon global
memory sysiem,

A Photon memory object must be created before 1t
is used. This is done by specifying a piece of the
memory of an active process containing a local
representation of the memory object’s tnitial contents.
When this operation is performed. the caller must supply
a pointer in its virtual address space to the copy of the
object. an indication of the Photon memory type. an
indication of the representation type, and possibly other
parameters. Under the mapping style of interface. this
memory arca would become the mapped image of the
actual Photon memory object. Under the ge=-p .. style
of memory object interface, the area would only supply
the initial contents of the memory object —i.e. creating a
memory object is like creating it with undefined contents
and immediately thereafter issuing a put call 1o set its
contents.

5.9.2. Read-Write Semantics.

A Photon memory object may be mapped into the
vintual memory space of a process. provided it knows the
memory 1D of the object. Once mapped. the value of the
object may be read at the mapped range of locations.
The process may or may not modify the object (wrile the
locations). and modifications may or may not be seen by
other processes mapping the object, depending on the
memory object type and type of mapping operation
performed.

5.9.3. Memory types and Caching

Copies of a Photon memory object may be located
in more than one Photon host machine. The copies are
considered to be in the local cache of the Photon
memory system. This would occur if processes in
different machines mapped the item simuitaneously.
When this occurs, the processes must obey some
discipline in referencing and updating the object, just as
would be the case if several processes mapped a piece of
shared memory in a multiprocessor. A typical discipline
is that only one process will modify the data at a time.
and the processes mediate the right to modify the shared
area by acquiring a lock. Another common situation is
that one process always writes the data, and all others
only read it. The various Munin memory types were
chosen to maitch the actual patterns of access exhibited
by shared memaory progiams. Each Munin memory type
obeys a different cache update strategy suitable for its
usage pattern. Photon includes Munin's set of cache
algorithms, and extends it by making it an extendible
set—in particular, various data replication stratcgies, for
example, version voting in Cronus, are modeled as cache
update strategies.




5.9.4. Synchronization

Synchronization between copies of a memory
object is a function of the memory type. The producer-
consumer memory type knows that a value is only
written by the creator and then subsequently read by
various consumers. Thus no special effort is required to
keep copies :lentical—i.e.. synchronized. However,
since computations will proceed faster if values are
forwarded in advance of their being needed. and copies
need to be deleted when they have been consumed, the
producer-consumer type uses a system of distribution
lists and reference counts to implement a policy that
assures that values rendezvous with consumers and are
deleted as soon as possible. This rendezvous process. of
course, constitutes a form of synchronization between
processes. At the RPC level, rendezvous with a
producer-consumer value in the memory system is called
claiming a future.

Other memory types use different algorithms for
synchronization of values in different caches. For those

described the use made of the memory type above. The
representation type makes it possible for a memory
object 1o be shared belween systems with differing
machine architectures—i.e. different word sizes.
different floating point formats, etc. When a copy of a
location is sent to a peer memory system in an update. if
the peer is not of the same architecture, the contents of
the object is converted t0 a machine independent
representation which is placed in the message sent to the
peer.  The receiving peer converts the wmachine
independent representation to inilialize or update the
contents of its copy of the memory object. When
practical, Photon peers may negotiate away the use of
the machine independent representation. This permits
the substitution of native representations if the peers arc
on machines of compatible architecture, or inexpensive
representations that both machines are capable of
producing and parsing, if such exist. Photon makes no
use of the local representation of the memory object, but
makes it available to the application ievel.

memory types modeled on cache coherency algorithms. 5.9.7. Access Control

there is nothing new here. Replication memory types
use their distinctive algorithms to effect reliable
replication of memory objects.

Photon will initially use the version voting method
of Cronus as its reliable memory method. Other tvpes
will be able 10 be implemented in the Photon library. and
users will be able to extend the set of memory types by
defining memory type servers.

5.9.5. Locking

In Munin. a special class of memory objects is the
lock class. Whereas all other types of memory objects
are accessed with map. urmap or getszut, locks are
accessed with lccx and unicck primitives.  This is
because the algorithms for obtaining and releasing locks
are similar to those for obtaining. updating and

Some sort of access control clearly belongs in the
memory level of the Photon design. We propose no new
concepts in the access control area. If access control ts
incorporated at the memory level, it would be an
independent property of a memory object—"orthogonal™
to memory type and representation type. Access control
could also be incorporated into the object level—i.e. in
heavyweight objects. by inhentance from one of a
number of defined objects which in tumn inherit from a
general access control object base class. At present this
is an open issue in the Photon design. The simplest
approach would to adopt the access control scheme from
Cronus and insert it into the memory level of the archi-
tecture. This corresponds to the latter scheme mentioned
above.

invalidating copies of memory objects. Secondly. given 5.10. Language Veneers

sufficient hints, the memory system can optimize the
propagation of updates by noticing where locks are held
and when they are released. For example. if the Photon
memory subsystem knows that a set of memory objects
are locked by a particular lock, then it can defer
broadcasting updates from system holding the lock while
the objects are updated, instead of sending updates when
the lock is released. For simpler cases, the memory
object will be able to serve as its own lock. Thus. a set
of simple locking operations will be defined as memory
access methods that apply to any memory tvpe—unless
the memory type specifically overrides the method,
making it invalid.

5.9.6. Representation type

A Photon memory object carmes both a memory
type and 2 data or representation type.  We have
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Photon is designed to support languages such as C.
C++, and Ada directly with libraries of support routines,
definition files, macro, class. or generic definitions,
preprocessors if appropnate, and tools 10 genciate
libraries, header files. and other code for Photon classes
defined in the Photon Object Definition Language. Pho-
ton may support other larguages. Access to Photon fa-
cilities can be provided to any language, although there
may be practical reasons for not doing so.

In this section. we describe our design for Photon's
support for the C++ language. We emphasize C++, be-
cause it is well matched to the object oriented concepts
of Photon, and it allows us to explore distributed
programming in a more modern context than the C
language. Because C++ provides sufficient definition
facilities, macros and specialized preprocessing are not
necessary.  In effect (at feast for our purposes), C++ is




an extensible language. Photon objects are mapped into
C++ objects that are either actual implementations of the
objects or proxy objects that send messages to the
Photon class or object server requesting that the
corresponding method be performed on the actual object.

Photon's language support for the C language gen-
erally follows the model used by Cronus. Stuctures are
defined to represent objects, and routines are defined to
operate on those structures, but the C language is is not
extended.

5.10.1. Photon Object Definition Language

Photon provides the Photon Object Definition
Language (ODL) which may be used to define classes.
Classes are implemented in programs which act servers
for objects of the class. and are accessed by programs.
known as clients. A program may be both a client and a
server, even for the same type of object.

The Photon Object Description Language is an
extension of the Cronus object description language. Ii
is deliberately unlike C. PL/1. ADA, eic. in an effort to
be language neutral -- that is. equally appealing to users
of various languages. ODL defines cantypes which are
units of structured data that may be accessed or passed
through Photon. It also defines classes, and for each
class, the methods and parameters that may be applied to
a member of the class. Any parameter to a method may
be a cantype, and the state of an object may be
represented by a cantype. If a cantype T is defined.
Photon  automatically defines Futvre<T> and
Sequence<T> -- these are sometimes called metatypes.

The designer of a Photon application designs cne
more classes by writing class descriptions in the Photon
Object Description Language. A file containing this de-
scription is processed by the Photon Description
Language processor. It may be processed only for
syntax checking, or to create and/or regisier a class
descriptor (assuming it finds no errors).” A class
descriptor is itself a Photon object. Once a class
descriptor exists, the processor may also be used to
produce language specific description files for inclusion
in programs which reference objects of the class
described. These files contain declarations of routines.
structures, classes. templates, and possibly macros.
depending on the target language and on the class itsclf.
At the present time, the Photon Object Description
processor is the only language preprocessing we expect
to use in Photon.

5.10.2. Mapping ODL into Objects in the Target Lan-

guage.

The class description is mapped into declarations in
the target language. An object has a state, which is held
in a cantype declared in the representation clause of the
description. The cantype is a structure in an abstract
data space, but it can be translated directly into a data
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structure in each supported target Janguage. In Photon.
this wanslation can happen both dynamically and
statically. The static translation occurs when the lan-
guage-specific description file is produced from the
object descniptor.  Effectively. the Photon object
description is translated into a descnpuon of the objecl
in the target language. The translation would occur
dynamically when the representation was passed
between two servers for the same class which werce
written in different languages—or between two chient
programs which operate directly on the objects.

Photon uses ar extension of the Cronus abstract
daa space. Cronus and Photon use their abstract data
spaces in the representation clause of the ODL, and in
defining the type of parameters to methods. One
extension to the abstract data space is the tagged union.
Other basic types and structuring concepts are identical.
In C and C++. a tagged union is mapped iato a structure
containing a g and a union, The tag is mapped
according to its tvpe. and the elements of the union arc
cach mapped separate according to thewr individual
types.

Metatvpes arc also mapped. In C++. the metatvpes
can be mapped directly. using templates. The metatype
sequence is mapped by the Seguence<slazs T» tem-
plate. and the metatype future is mapped by the 7.-
=ire<class T> template. Either of these templates may
be used for any type T whether or not T is defined within
ODL or simply defined in the local program, provided a
program is operating within the Photon environment.
Such a metatype could only be used inside a single pro-
gram.  However, distributed programming through
Photon requircs that the base type of the metatype be a
cantype declared in ODL.

In our work on Photon. we have prototyped
templates by using macros since the version of the C++
compiler we are using does not vet implement templates.
However, templates are standardized in the Ca+
language and due (o appear soon in most C++
implementations. The latest version of cfront. a C++ to
C wranslator from AT&T. includes the template feature.
The macro approach suffers from some clumsness and
1s difficult to debug.

5.10.3. Proxy Objects

One of the key elements in our object-oriented lan-
guage veneer is that of proxy objects. Proxy objects are
class definitions that represent remote objects within a
client program. Thesc class definitions are created by
the class designer to work cooperatively with servers of
that object class. Proxy objects permit the class designer
to implement arbitrary caching and consistency policies
between clients and servers. Figure 13 shows a schemat-
ic representation of how proxy objects can be used for
communication between client and a server.

Remote procedure calls are simply a special case of
proxy objects. RPC stubs generated from an ODL are




Daad

Operating
System/Device
Drivers

Virtual Data Path

. l B Actual Data Path

Operating
System/Device
Drivers

Network

Figure 13: A Schematic Representation of Proxy Objects

merelv proxy objects that send a message to the server
for each operation requested upon an object. However.
it is not difficult to visualize object definitions where
these trivial proxy objects cause unneeded communica-
tion. For example, imagine that there exists a class ta22
that has operations define_cclor and read_cclzy. A
client might contain code such as the following:
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Using an RPC proxy object. these two operations would
require two separate messages to be sent to the ral’
server, and two replies to be received. However, a more
intelligent proxy object might simply notify the -al:
server that it was maintaining a cache of b’s object at-
tributes and cache the color of the ball in a local state
variable. Then when the read_coicr operation was re-
quested. the local proxy object could reply red without
any further communication with the server.

Proxy objects raise many of the same issues that
memory objects do. They must define protocols for con-
sistency and caching that are appropriate for the objects
they represent. However, we can resolve these issues by
applying the same techniques that we used to implement
shared memory objects. Furthermore, because proxy ob-
jects are specifically generated 10 cooperate with their
servers, we can instantiate arbitrarily complex protocols
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for consistency and caching without burdening the user
with this complexity. We believe that proper use of
proxy objects substantially increases the flexibility of
Photon language veneers and opens up new opportuni-
ties 10 improve the performance of distributed applica-
tions in high-latency environments.

5.10.4. Description of C++ Implementation of

Futures,

A future is an object that will return a value when
claimed by a program. The value is typed -- in Photon.
the future itself may be statically typed according to the
type of the value it will return. or may be untyped (i.e.
dynamically typed.) The difference between a variable
of a type and a future of that type is that the future may
or may not contain a value at any particular time. and
contains state information indicating whether it does or
does not contain the value. A vanable of a type always
contains a value, even if it is uninitialized. and it would
not make sense to use this value.

When a program claims the value of the future. it
will receive the value immediately if the value is already
available. or it it will wait untd the value is available.
This must make sense for the program to be use-
ful—some other active part of the program, or some
other program, must be prepared to supply the value.
The future is clearly an inter-process communication
facility. In Photon. we provide facilities that allow a
program to create a future that may then be used to pass
a value between two other programs which may be on
different machines. This allows a program to direct a




distributed computation without being an intermediary 5.10.5. Photon Objects and Methods.

for data exchange. It also eliminates needless delays for
messages passing through the network that would occur
if the program was the intermediary—improving the
performance of the distributed computation.

Example:

In C++, a Future is an object, declared as
Future<type>, a template defined by the Photon defini-
tion files. The value type of a future may be any data
type. A declaration like the following:

Future<int> f;

declares an object £ which is an int-returning future.

This object may be supplied by use of an assignment

statement:
f =

<.
o}

'

or claimed by something like:

>
Ca

int 1; i = £; py "if(fi", etc.

If a program containing the first declaration of
above executes the first statement in one thread and the
second in a different thread. the second thread will wail
until the value is available from the first thread and then
receive the value supplied by the other thread. In Photon.
these threads may be in the same program or in different
programs, and on the same machine or in different
machines.

An untyped future may also be declared as follows:
Future untyp:;

An untyped future may be supplied using Supply (type
or claimed using Claim(zype}. For example:

integer 1i;
untyp.Supply tis;
untyp.Claim(i}; // useful if in some

// other thread

When the Claim method is executed, the thread
executing the Claim will wait until a Supply is executed
on the same future. It will then receive this value,
provided that its argument is of sufficient size and of
compatible type with the value dynamically bound to the
future.

Untyped futures are particularly useful for transit
futures when no use is made value of the future, or of its
type in the invoking program.
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Since Photon is object-oriented, one usually refers
to an object, not directly to a program. Of course.
whenever a method is executed on some particular
machine, there must be a process or thread to execute
that method. For the duration of its execution. a method
invocation is equivalent to a thread. The following ODL
statements:

Lype Randor.
abbrev 1s Rand

representation i

ev 1s Azcur

v
ren
regentaliln 15 asu<g: L.lats

end type Accumdlator:

2 ST -
AZTUT L LG LT,
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defines two Photon classes. raricr. and
If the get method is invoked on a randor object. a float
of random value is returned.

This definition is translated into the following C++
class definition.

class Accumulator
{
private:
fioat value;
public:
ficar addifloaz);
)i

These statements would be obtained by running the
Photon class tool with suitable arguments. and storing
the output in one or more files named after the classes
they define. These normally would then be included by
programs that make uses of these Photon classes.




In C++, the following program:

#include "Ranaom.H"
#include “Accumulator.H"

maini)

{

Random r(*hostA®);
Accunuilator a("hostB");
float £ = r.get();
a.add({f):

}

first locates a Random object, initializing a proxy object
r to refer to it, then locates an Accurmulater object. call-
ing its proxy a. It then invokes the get method on r, re-
ceiving a float value which it stores in variable . Fi-
nally, this value is added to object a's total by invoking
the Accumulator class method ada.

5.10.6. Setup Facliities

An important use of Futures in Photon results from
the ability to use a future to specify a flow of daia
between the methods of two objects. Any formal
parameter of a method may have an actual which is
either of the type it specifies. or a future of that tvpe.
When the same future is specified as an output
parameter 10 one method invocation and as an input
parameter to another method invocation. Photon
arranges that the value that the first method supplies to
the future (as the output parameler) is supplied as the
input parameter to the other method invocation.
Continuing to use the Random and Accumulator classes
from the previous example. we can construct the follow-
ing program:

maint) |
Randcom ri"nzszim™y;
Accumulazor a("hcstg”);
Future<int> f;
f = r.get{):
a.add(f)y: }

n

This program does the same thing as the onc in the
previous example, but variable f is a Future<int>—ie,
a future returning an in:. In this program, the value of
the future is neither produced or consumed by mair. and
50. it does not need 10 pass through the local compulter.
Instead, the value passes directly from hostA 10 hcsts.

5.10.7. Example of Future Parameters

In the Photon Object Definition Language. a
parameter of any method may be declared to be of any
declared type in the abstract type space defined by
Photon, or a Future of that type. A future is not itself a
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Photon abstract data type. but is a type defined by the
language support for C++. The method function
declaration generated by the ODL processor will contain
Future<type> in the appropriate parameter positions if
"Future type " was declared in the ODL definition of
the method. Photon takes appropriate action to handle
cach of the 8 distinct cases resulting from the
combination of input or output parameter, formal future
or non-future parameter, actual future or non-future
parameter.

When a formal parameter is not a future, the value
is transported either before or after execution of the
method, depending on whether it is an input or output
parameter. When the formal of an input parameter is a
future, execution of a method is initiated immediately.
whether the value of the future is available or not. The
method will block when (or if) it tries to claim this
value. When the formal of an output parameter is a
future, the value is transponied to its destination as soon
as it becomes available during the execution of the
method.




6. Issues revisited

The previous section described the key technologies
being incorporated in Photon to provide high perfor-
mance in what we believe 0 be the computational eavi-
ronment of the 1990s and beyond. In this section. we re-
visit the issues we raised as the result of our sample ap-
plication analysis and examine how Photon has ad-
dressed them. Those areas that have not been addressed
have been noted as arcas for further research.

6.1.Communilcations

How do we deal with increased communications laten-
cy? We have incorporated sequences and giobal futures
within Photon to accommodate increased communica-
tions latency. By using futures to pipeline requests and
replies, we can cause many operations to one server to
be executed in only onc round-trip communications
time. We can further use futures to cause data to flow
directly from the producer of data to consumers of tha
data, thereby further reducing latency effects.

How do we model scheduled versus unscheduled con-
munications (e.g., connection-based models versus data-
gram models)? Photon can use both connection-oriented
and non-connection-orientcd communications models
for its communications substrate. Because of its layered
architecture. most Photon mechanisms operate indepen-
dently of the underlying phvsical communications layv-
ers. Where special communications features are re-
quired by applications, objects can be bound selectively
according to specific communication parameters such as
reliable transport or fixed latency. The application has
this flexibility because of Photon's explicit location of
objects.

What communications semantics do we guarantee {e.g.,
ar-mosi-once delivery versus at-least-once delivery or
best effort delivery)? Photon typically provides se-
quenced, reliable data streams as its normal. high-band-
width communications mechanism. However, applica-
tions can specify their communications needs at the time
of object location to permit the use of less expensive
communications methods. Furthermore, proxy objects
permit partitioning of object methods to guarantee appli-
cation-specific consistency requirements regardless of
the intervening communications layer.

How does the user specify the communication needs of
the application? The user specifies the communications
needs of the application through additional parameters
passed to the locate operation. These parameters tell the
system what aspects (e.g.. cost, bandwidih, latency) of
the communications path to optimize.
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How do we provide comnumications 1o many objects at
once?  Logical Object denufiers (LOIDs) provide a
mechanism for referming to muluple instances of objects
atonce. We have designed this facihity largely 1o permit
replication of objects for fault-tolerance.  However.
LOIDs can also be resolved into mulucast physical iden-
tifiers wherc the underlying communication substrate
permits this type of communication This mapping per-
mits the addressing of multiple physical objects in one
operauon. This use of multicasting 1S most appropnate
when the application is performing one-way communi-
cation or when custom proxy objects are being used that
can coordinate responses from muliple objects: other-
wisc, there is the opportunity to confuse the application
with multiple replies to one request.

How do communications abstractions interact with the
object-oriented programming model” The programmer
at the object level in Photon interacts with the communi-
cations abstraction largely through the use of parame-
1rized location of objects and through the use of global
futures. Objects can be Jocated by auribute through the
use of a Photon location broker. Global futures then per-
mu the application to specify the data flow between ob-
jects independently of the control flow of the program.
Both of these mechanisms can be encapsulated cleanly
into an object’s definition through the use of language
Veneers.

6.2. Computation

How do we express parallelism in a distributed applica-
non” Logical parallelism is expressed in the application
through the use of the future abstraction. Futures allow
the programmer 1o define parallelism within the applica-
ton while simultancousty establishing a point of svn-
chronization for the results of that parallelism. Futures
allow the programmer to express opportunities for paral-
lelism without necessanly requinng parallel resources
to be allocated.

How do we bind our parallelism abstractions 1o rea!
computaitonal etements 1o maximize the performance of
the computation? While futures define opportunitics for
parallelism, it is up to the resource management policies
of the system to define what actual resources will be
uscd to achieve this parallelism. Photon does not at-
tempt to restrict the policies that might be used to ac-
complish this resource allocation. These policies are
defined by how the objects being invoked are imple-
mented by servers and how the application Iocates these
objects. Futures permit us to understand how much in-
ter-object paraliclism the application can use and still ex-
ecute cormrectly. Nonetheless, even more parallelism
may be used within an object method provided that it
docs not violate any of its ODL specifications: therefore.,
futures simply provide us with a lower bound on the
amount of parallelism that might be used.




How do our computational abstractions synchronize
with one another? All object invocations return a result

cal names that it can resolve to. A physical name by
definition spectfies only one object

that can be used for synchronization. Synchronous oper-  6.5. Programming Model issues

ations are accomplished by having the application imme-
diately claim this synchronization result. Asynchronous
operations allow the client to continue executing until
the result of the operation is needed. Futures involve
storing or passing this synchronization result to other cli-
CNIS OF Servers.

6.3.Binding

How do we create bindings between clients and servers’
Clients can create bindings to servers by locating physi-
cal object identifiers (POIDs) for objects they wish to
perform operations on. These POIDs contain all infor-
mation required to communicate with the object. POIDs
are usually obtained from an object location broker or
name server.

At what time are these bindings created”? A client is
bound to a server when a locate operation is performed
on a logical object 1D (LOID) or when an initial opera-
tion is done on a POID. Both of these functions are usu-
ally performed when the object name 1s resolved and the
object is imparted into the application.

What is the model of computation offered to the pro-
grammer? The fundamental model of computation used
in Photon is an object-oriented model. In this model, the
fundamental addressable atom throughout the system is
the object. All operations upon objects are performed by
methods whose interfaces are publicly defined. Thesc
methods are gathered together into servers that act a
computational representatives for intemnally stored ob-
jects. In some implementations, portions of methods
may be incorperated inte a client application by means
of proxy objects.

How is this computation mode! integrated into the pro-
gramming language? The object-oriented model imple-
mented by Photon is integrated into programming lan-
guages through language vencers. The language veneer
is a set of support routines, definitions. macros, and pre-
processors (if necessary) to support Photon concepts
within that language in the most natural form possible.
In the case of extensible languages such as C++., this ve-
neer can be done almost enurely through libraries and
class definitions.

How long do these bindings last” Bindings arc cither 6.6.Fault tolerance and Correctness

explicitly destroyed when an application terminates or
are timed out after a period of inactivity. In either case.
a new locate operation will have to be performed before
any new operations can be sent from that clicnt to that
Server.

6.4.Naming

How do we name objects and services? Services and ob-
jects can have three types of names: symbolic names.
logical names (LOIDs) , and physical names (POIDs).

How do we map descriptive requirements (names, prop-
erties, keywords) 1o servers? Just as symbolic names
can be mapped to logical names by a name server. de-
scriptive requirements can be similarty mapped through
use of a location broker. In both cases. a logical name
for a service is returned by a lookup in a database: the
name server database is indexed by symbolic name. and
the property server database is indexed by attnbute.

What format and scope does an object name have?
Symbolic names are alphanumeric strings. and LOIDs
and POIDs are fixed-iength structures. All names have
system-wide scope.

Can an ohject name specify more than one object? A

symbolic name can specify only one object. a logical or
physical name. A logical name can specify many physi-
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How do we provide fauli tolerance in a high-latency
comnunications environment? This is an area for fur-
ther research. Photon supplies basic mechanisms for
replicated objects through its use of proxies and logical
object addresses, However, it does not yet define rephi-
cation techniques or policies that attempt to provide gen-
eral fauli-tolerance. We have speculated that in high-la-
fency COmMmUNICations environments. primary Copy
schemes will often be more efficient than arbitrary repli-
cation protocols. This efficiency occurs because locking
and synchronization among records can be done entirely
within the primary copy without reference to any other
servers. While updates must still be propagated to sec-
ondary servers before they can be considered complete.
the reduced need for synchronmization decreases the num-
ber of round-trips required between copies of the server,
and therefore will provide highes-performance operation.

In the case of failure of the pnmary copy. a new
primary is elected by the remaining servers for that ser-
vice. Because this voting process need only be done on
failure of a primary server (rather than on the failure of
any server in quorum schemes or on every operation in
version voting), primary copy schemes result in fewer
changes in service due to fatlure,

Can we provide appareni atomicitv of complex opera-
tions involving many objects?” We have not yet ad-
dressed how to achieve atomicity of execution for opera-




tions involving many objects. Transactions provide a
powerful means of guaranteeing atomicity of such oper-
ations, but transactions also impose significant costs on
the programs using them. For example, every operation
that can be part of a transaction must have a way of roll-
ing back its state at any point until a commit is donc.
Furthermore, transactions require multiple round-tnps
over the communications path to specify both the opera-
tion invocations and the commits required to post them.
We will continue to look into ways in which we can pro-
vide atomicity of multiple operations with high perfor-
mance and low cost.

6.7.Resource Allocation

How do we optimize the use of resources for a computa-
tion? How do we determine the correct dimension of the
application to optimize (e.g., performance, securiry, cor-
rectness)? Our architecture does not presently attempt to
dictate how resources arc optimized. Instead. Photon
provides facilitics such as dynamic method binding and
proxy objects that allow processes to control their re-
source use according to its needs. These mechanisms
can be be manipulated by interactive processes (o
achieve performance optimization on a local scalc.
However, global optimization of resource use and gener-
al-purpose implementation of resource management pol-
icies are beyond the scope of this nroject and are best ad-
dressed through the use of cooperating Photon servers.
each providing local resourcec management. Photon wil
provide interfaces for administrators to attach servers
that implement desired resource management policy.
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7. Comparisons with Related Work

Photon incorporates concepts from a wide vanety
of other systems. In this section, we compare and con-
trast the mechanisms in Photon with those provided by
other state-of-the-art systems.

7.1.Cronus

Cronus is a distributed programming environmeni
designed to work on a wide v..ricty of heterogencous op-
erating systems and platforms [Schantz Cronus)(Vinter
Cronus]. It was developed at BBN under funding from
the Rome Laboratory of the United Siates Air Force.

Cronus provided the model for manv of the mecha-
nisms in the object laver. We were particularly influ-
enced by Cronus’s ability to provide an object-onenied
programming environment on top of a wade vanety of
non-object-oriented operating systems and computer ar-
chitectures. Photon incorporates several specific Cronus
concepts such as location-independent object identifiers.
futures, and direct connections  ith little or no change.

The lavering model in Photon was inspired by the
Cronus philosophy of running on top of a native operat-
ing system. Photon extended that phitosophv to incorpo-
raie the concept of a process-10-instance mapping {or re-
source management. Nonetheless, an existing natve op-
erating system will make an excellent instance laver for
Photon and should substantially decrease the cost of im-
plementation.

Our principal differences with Cronus come from
our tnterest in being able to bind chents to servers for the
purpose of high-performance communications. Cronus
uses a purcly location-independent model of addressing
objecis, where Photon uses both location-independent
and location-dependent names for objects.  Photon's
ability 10 associate an object with a communications path
permits the use of streaming for communication. thereby
increasing communications performance and decrecasing
the effects of latency. Cronus assumes that all opera-
tions on an object are independent of one another. and
this makes it difficult to do streaming without consider-
ably more mechanism.

Cronus has a well-defined quorum-voling scheme
for achieving fault tolcrance by means of replicated serv-
ers. While Photon could implement a stmilar facility,
we believe that the synchronization costs of replicated
servers will be much high than those inherent in primary
copy schemes. Therefore, Photon's fault-tolerance ar-
chitecture will rely less on version-voting methods.
Nonetheless, we have found the Cronus concept of auto-
matically gencrating fault-tolerant servers according to a
specification to be quite important {0 users, and we will
provide similar techniques in our system.
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7.2.Mercury and Argus

Mercury is a distributed operating system devel-
oped at MIT [Liskov Mercury). Argus is both a pro-
gramming language and a distnibuted system built on top
of Mercury primitives [Liskov Argus}. Both systems
were developed under funding from the Defense Ad-
vanced Research Projects Agency and the National Sci-
ence Foundation,

The Mercury and Argus systems contributed the
concepts of call streams and data flow communications
using RPC constructs to the Photon architecture, Argus
also supports promises {(essenually strongly typed fu-
tures used for streaming and thread synchronization). the
use of transactions for atomicity, language veneers, and
clearly defined exception-handling semantics.

Argus has significant capabilities in the area of fault
tolerance. In particular. it supports atomic transactions
orf actions. Actions are simply operations that are guar-
anteed to complete atomically or to not happen at all. re-
gardless of failures. Therefore. Argus programs are abie
0 guarantee the commectness of the data they control de-
spite arbitrary failures in the distributed system. This ca-
pability in conjunction with pnmary-copy replicated
services results in extremely good tolerance for svstem
and component failure.

Attractive though it is. we have not adopted atomic
transactions for Photon. lurgely due to uncertainty re-
garding their cost in high-latency environments. On one
hand. transactions allow the buffering of many op-
crations inio one entity. which should improve commu-
nications throughput. However, the need for two-phase
protocols 1o commit operations imposes a need for at
least two round-trips in addition to those required for the
original operations. Therefore, we have left the use of
transactions in Photon as an open question for further
consideration.

7.3.Alpha

Alpha 1s an adaptable decentralized operating sys-
tem for real-time applications {Jensen Alpha]. It was
initially developed at Camegie-Melion University, and
later versions are being developed at Concurrent Com-
puter Corporation under funding from the Rome Labora-
tory of the United States Air Force.

Alpha is specifically optimized for integration and
opumization of large. complex. distributed real-time sys-
lems.  Alpha provides the concept of threads that are
scheduled according to time-value functions that dictate
their priority over time. These threads can migrate from
host to host in a distributed system and carry with them
their scheduling policies. access rights, and resource
management requirements.  Alpha. like Argus, provides
transactions to ensure atomicity of function; however,
Alpha’s ransaction mechanisms are integrated with the
scheduling policies of the system 10 guarantee satisfac-
tion of real-time constraints,




Alpha’s decoupling of scheduling policy from
mechanism is similar in spirit to Photon’s decoupling of
the communications mechanisms from the programming
model. Our concept in Photon is that the programmer is
free to construct processes and abstract objects without
regard for where or how they will be instantiated at run
time. When the actual application is run, the instantia-
tion and location of those objects and processes is dictai-
ed by user-defined resource management policies en-
forced by the system. Photon extends this concept by
optimizing the communications path also at this time
through dynamic method binding.

While Photon is optimized for high performance, it
is not specifically targeted at solving real-time distribut-
ed applications as Alpha is. Therefore, the tradeoffs
made in Photon are directed more toward flexibility.
scalability, and ease of use than toward real-time needs.
We believe this emphasis is justified due to the increas-
ing ability of organizations to dedicate hardware to solv-
ing real-time problems and the continuing requirement
for systems that are easy 10 use and understand.

7.4. Amoeba

Amoeba is a distribuied system developed at the
Vrije Universiteit (VU) in Amsterdam, the Netherlands
by Prof. Andrew Tanenbaum [Tanenbaum Amoeba).

Amoeba is panticularly interesting for this project
because it is a distributed system designed specifically 1o
work with parallel processors. Amoeba provides a cli-
ent/fservexr architecture using a microkemel, Processors
are considered to be well-connected nodes in the distrib-
uted system and are allocated dynamically to users.
Amoeba’s communication is based upon a very-high-
performance remote procedure call. Objects are refer-
enced by means of capabilities. which are cryptographi-
cally protected, location-dependent names. Naming of
objects is provided through a directory server.

Photon’s use of location-dependent names for high
performance is similar to that of Amoeba’s use of capa-
bilities. However, Photon provides location-independent
namcs also to permit transparent replication of services.
Amoeba’s capabilities also dictate access rights 10 a
server, whereas Photon will use authentication. tickets.
and access control lists such as in Cronus t0 exercise ac-
cess control.

Amoeba achieves much of its high communication
performance through the use of tightly coded kemel rou-
tines and minimal services. The Amoceba kernel runs di-
rectly on the hardware and does not provide features
such as paging or swapping. Photon takes a somewhat
different tack because it is designed to accommodate a
resident operating system at the instance layer. There-
fore, Photon provides high-level mechanisms such as
global futures to achieve high throughput and uses im-
plementation techniques such as dynamic method bind-
ing to reduce layering costs and data copying.
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8. Photon Demonstrations

During this project, we developed a series of demonstra-
tion programs to illustrate the fundamental mechanisms that
make up Photon. The Photon Concept Demo software is de-
signed to illustrate some of the basic Photon features in sim-
plified form. The demonstration software uses a kernel-less,
client-server model, in which the programs making up each
demonstration are run as unprivileged. user processes. The
Photon functionality needed is built into a library that is
linked into each program. This software is supplied in both
source and binary form for the Sun 3 and Sun 4 platforms.
This same demonstration software has also been compiled
and run on Apollo DN 10000 paraliel processors.

The demonstration software shows some of the mecha-
nisms critical to high performance in Photon. These include
the following concepis:

= svnchronous and asynchronous Remote Procedure Calls
(RPCs)

«  stream and non-stream RPCs. and global futures. These
capabilities are built on top of the native operating sys-
tem’s TCP socket interface

» demonstratable versions of our globally-claimable
futures mechanism that show third-pany translers.
pipclining. and sequences

» aprototype Photon support library in C

- asimple name server to locate Photon services

»  asimple prototype of the C++ language vencer.

These concepts are encapsulated into clients and servers that
can be used to demonstrate the following functions:

+ Name server (name_server, phls)

+  Synchronous Echoing (echo_client 1 -de I,
echo_server)

«  Pipelined Echoing (echo_client_1 -d=
echo_server)

«  Third-party Data Transfer (echo_client_2)

+  Sequences (seq_send, seg_recv)

+  Mandelbrot Parallel Computation (mandel_client,
mandel_server)

+  Echoing using a C++ Photon veneer (Echo2,
Echo2b, Echo3, ftyped)

N

For complete details regarding the demonstration software.
please refer to the Photon Software User's Manual. BBN Re-
port #7709,
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9. Areas for Further Research

In this project. we developed a collection of key
concepts that form the foundations for a latency-inde-
pendent, high performance distributed environment.
These concepts were:

*  Object architectures

+  Global futures

*  Sequences

» Distributed shared memory

«  Explicit location mechanisms
* Language veneers

While these concepts form a consistent architecture for
achieving the goals of this project. they need further ex-
amination and extension in the context of requirements
for fault-tolerance and resource management. We be-
lieve that work in the following arcas would be bencfi-
cial:

= More complete designs of the core communication
elements, such as futures. sequences. and shared
memory objects.

»  Process abstractions mcluding threads and schedul-
ing

»  Designs of key scrvices. such as location broker.
name server, and typc management, (o suppori
reconfiguration. resourcc management. symboli
naming. and application development,  Thesc
services must be designed to augment Photon, while
allowing  continued operation of  Photon
communication when they fail.

»  More attention to reliability, including reliable. ai-
most-once delivery of requests and object
replication

»  Approaches for allocating, sharing. and restricting
use of resources such as processor time and
memory. communication bandwidth and transport
connections

We believe the last two points are particularly im-
portant in C* environments. For Photon to develop into
a survivable and robust system. we need to develop tech-
niques for error detection and recovery, and we need 10
prove that these structures are sufficient to support sys-
tem operation in the presence of network partitions and
component failures. We believe that modern techniques
for software fault tolerance, distributed database integri-
ty. reliable transaction transport, and multiprocessor
shared memory synchronization would all be appropriale
candidates for enhancing the robustness of Photon.

In the area of resource management, Photon cur-
rently does not define how servers are propagated 1o new
hosts. We could definc a new element of the architec-
ture 1o locate code for a particular application compo-
nent, 1o transmit the code to an idle computational nodc.
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and to start it running. Combining this with an approach
to grouping nodes and apphcations, and assigming a cluss
of applications 1o a class of nodes would provide a focus
for designing segmented processor resource allocation
strategies,

Finally. we believe that anteroperation with other
distnbuted svsicms and languages will become increas-
ingly important as our research proceeds. Large invest-
ments have already been made in distributed systems
such as Cronus and Alpha. As more organizations de-
ploy local and wide area networks to meet their commu-
nications needs. more applications will become avasable
for integration into our distributed environment. If we
can preserve the investments that have been made 1n pre-
vious distributed systems while integranng the concepts
we have developed in Photon. we should then be able o
substantially reduce the development time for new appli-
cattons of distnbuted system technology. Reduced de-
velopment time permits gredier responsiveness 1o users
and can reduce overall sysiem costs,




10. Summary

In this paper. we have described the issues and so-
lution mechanisms involved in the design of a high-per-
formance distributed system architecture. We have ex-
amined both the characteristics of next-generation com-
munications systems and the requirements of simple C*
distributed applications. We have designed a basic ar-
chitecture and mechanisms for a distributed system
called Photon that is capable of meeting the needs of
these applications in high-performance environments.
While this is only the first step in the development of
high performance distributed systems, we believe that
the concepts described here can make substantial contri-
butions to next-generation architectures, By performing
this work now, we have prepared the way for software
architectures capable of exploiting the vast potential in
fiber-optic communications and scalable distributed
computation. We believe that sysiems like these will
provide the technology to serve the needs of C users
well into the next decade and bevond.
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